Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2401685, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664981

ABSTRACT

The redox mediated photoelectrochemical (PEC) or electrochemical (EC) alkene oxidation process is a promising method to produce high value-added epoxides. However, due to the competitive reaction of water oxidation and overoxidation of the mediator, the utilization of the electricity is far below the ideal value, where the loss of epoxidation's faradaic efficiency (FE) is ≈50%. In this study, a Br-/HOBr-mediated method is developed to achieve a near-quantitative selectivity and ≈100% FE of styrene oxide on α-Fe2O3, in which low concentration of Br- as mediator and locally generated acidic micro-environment work together to produce the higher active HOBr species. A variety of styrene derivatives are investigated with satisfied epoxidation performance. Based on the analysis of local pH-dependent epoxidation FE and products distribution, the study further verified that HOBr serves as the true active mediator to generate the bromohydrin intermediate. It is believed that this strategy can greatly overcome the limitation of epoxidation FE to enable future industrial applications.

2.
Nat Commun ; 14(1): 1943, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37029125

ABSTRACT

Epoxides are significant intermediates for the manufacture of pharmaceuticals and epoxy resins. In this study, we develop a Br-/BrO- mediated photoelectrochemical epoxidation system on α-Fe2O3. High selectivity (up to >99%) and faradaic efficiency (up to 82 ± 4%) for the epoxidation of a wide range of alkenes are achieved, with water as oxygen source, which are far beyond the most reported electrochemical and photoelectrochemical epoxidation performances. Further, we can verify that the epoxidation reaction is mediated by Br-/BrO- route, in which Br- is oxidized non-radically to BrO- by an oxygen atom transfer pathway on α-Fe2O3, and the formed BrO- in turn transfers its oxygen atom to the alkenes. The non-radical mediated characteristic and the favorable thermodynamics of the oxygen atom transfer process make the epoxidation reactions very efficient. We believe that this photoelectrochemical Br-/BrO--mediated epoxidation provides a promising strategy for value-added production of epoxides and hydrogen.

3.
Eur J Med Chem ; 244: 114800, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36215862

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a rising public health burden, and there is a lack of effective therapeutic drugs in clinical practice. Sustained hepatic inflammation is considered as the key histopathological feature and dangerous fact for NASH. Different causes vary from one NASH patient to another, while sustained hepatic inflammation affects all NASH patients. AdipoRon is the first small-molecule AdipoR agonist, exerting antidiabetic and anti-inflammatory effect. In order to find novel AdipoRon analogues with more potent anti-inflammatory activity, we designed, synthesized and biologically evaluated 32 analogues. Among them, Q7 exerted potent anti-inflammatory activity and less cytotoxicity. Q7 could dose-dependently stimulate the increasing of AMPK phosphorylation, the widely recognized downstream effector of AdipoR1 activation. In NASH model mice, Q7 showed significant anti-inflammatory, anti-fibrotic and lipid-lowering effect in mice liver, and was superior to AdipoRon. Together, Q7 holds promise for developing anti-inflammatory and anti-NASH agents.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Piperidines/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Liver , Mice, Inbred C57BL
4.
Sci Total Environ ; 527-528: 38-46, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-25956146

ABSTRACT

In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na2HAsO4) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles.


Subject(s)
Arsenic/analysis , Environmental Restoration and Remediation/methods , Groundwater/chemistry , Iron/chemistry , Water Pollutants, Chemical/analysis , Arsenic/chemistry , Water Pollutants, Chemical/chemistry
5.
Water Environ Res ; 85(2): 113-23, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23472327

ABSTRACT

To better understand the effects of recharge and discharge on the hydrogeochemistry of high levels of arsenic (As) and fluoride (F) in groundwater, environmental isotopic composition (delta2H and delta18O) and chloride (Cl) concentrations were analyzed in 29 groundwater samples collected from the Datong Basin. High arsenic groundwater samples (As > 50 micog/L) were found to be enriched in lighter isotopic composition that ranged from -92 to -78 per thousand for deuterium (delta2H) and from -12.5 to -9.9 per thousand for oxygen-18 (delta18O). High F-containing groundwater (F > 1 mg/L) was relatively enriched in heavier isotopic composition and varied from -90 to -57 per thousand and from -12.2 to -6.7 per thousand for delta2H and delta18O, respectively. High chloride concentrations and delta18O values were primarily measured in groundwater samples from the northern and southwestern portions of the study area, indicating the effect of evaporation on groundwater. The observation of relatively homogenized and low delta18O values and chloride concentrations in groundwater samples from central part of the Datong Basin might be a result of fast recharge by irrigation returns, which suggests that irrigation using arsenic-contaminated groundwater affected the occurrence of high arsenic-containing groundwater in the basin.


Subject(s)
Arsenic/analysis , Chlorides/analysis , Deuterium/analysis , Fluorides/analysis , Groundwater/analysis , China , Environmental Monitoring , Oxygen Isotopes/analysis , Rivers , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/analysis
6.
Chemosphere ; 90(6): 1878-84, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23146274

ABSTRACT

Iron isotope compositions of various Fe pools in aquifer sediments were measured at a known As-contaminated site in the Datong Basin, China. The δ(56)Fe values of HCl-extracted poor-crystalline Fe(III) range widely from -0.41‰ to 0.36‰. We interpret the low Fe(II)/Fe(Extractable) ratios (<50%) and the negative correlation between Fe(II)/Fe(Extractable) and δ(56)Fe values in HCl-extracted poor-crystalline Fe to be best explained by redox cycling of Fe induced by microbial Fe(III) reduction. However, the high Fe(II)/Fe(Extractable) ratios (~/>70%) and positive correlation between Fe(II)/Fe(Extractable) and δ(56)Fe values for HCl-extracted poor-crystalline Fe indicates production of sulfides (FeSs). The δ(56)Fe values of crystalline Fe(III) extracted by reductant appears to be comparatively small varying from -0.01‰ to 0.24‰, which is consistent with the δ(56)Fe values for ferric oxides/hydroxides having undergone microbial Fe(III) reduction. The Fe isotope composition of various Fe pools shows the transformation between crystalline Fe(III) and poor-crystalline crystalline Fe(III) and the secondary Fe(II) phases has already occurred or is occurring in aquifer sediments. More importantly, there is a significant difference in the As concentrations in crystalline Fe(III) oxides/hydroxides and HCl-extracted Fe phases. The concentrations of As range from 1.6 to 29.9 mg kg(-1) and from 0.6 to 3.0 mg kg(-1), for crystalline Fe(III) and HCl-extracted Fe phases respectively. Accordingly, the transformation of Fe minerals induced by microbial Fe(III) reduction can contribute to the mobilization of As. This study is the first to examine the Fe isotope compositions in high As aquifer sediments; the results show that the Fe isotope would be an important tool in demonstrating the enrichment of As in groundwater.


Subject(s)
Arsenic/analysis , Environmental Monitoring , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Arsenic/chemistry , China , Iron/analysis , Iron/chemistry , Kinetics , Models, Chemical , Water Pollutants, Chemical/chemistry
7.
Sci Total Environ ; 407(12): 3823-35, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19344934

ABSTRACT

High arsenic groundwater in the Quaternary aquifers of Datong Basin, northern China contain As up to 1820 microg/L and the high concentration plume is located in the slow flowing central parts of the basin. In this study we used hydrochemical data and sulfur isotope ratios of sulfate to better understand the conditions that are likely to control arsenic mobilization. Groundwater and spring samples were collected along two flow paths from the west and east margins of the basin and a third set along the basin flow path. Arsenic concentrations range from 68 to 670 microg/L in the basin and from 3.1 to 44 microg/L in the western and eastern margins. The margins have relatively oxidized waters with low contents of arsenic, relatively high proportions of As(V) among As species, and high contents of sulfate and uranium. By contrast, the central parts of the basin are reducing with high contents of arsenic in groundwater, commonly with high proportions of As(III) among As species, and low contents of sulfate and uranium. No statistical correlations were observed between arsenic and Eh, sulfate, Fe, Mn, Mo and U. While the mobility of sulfate, uranium and molybdenum is possibly controlled by the change in redox conditions as the groundwater flows towards central parts of the basin, the reducing conditions alone cannot account for the occurrence of high arsenic groundwater in the basin but it does explain the characteristics of arsenic speciation. With one exception, all the groundwaters with As(III) as the major As species have low Eh and those with As(V) have high Eh. Reductive dissolution of Fe-oxyhydroxides or reduction of As(V) are consistent with the observations, however no increase in dissolved Fe concentration was noted. Furthermore, water from the well with the highest arsenic was relatively oxidizing and contained mostly As(V). From previous work Fe-oxyhydroxides are speculated to exist as coatings rather than primary minerals. The wide range of delta(34)S([SO4]) values (from -2.5 to +36.1 per thousand) in the basin relative to the margins (from +8 per thousand to +15 per thousand) indicate that sulfur is undergoing redox cycling. The highly enriched values point to sulfate reduction that was probably mediated by bacteria. The presence of monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) is also evidence of microbial reactions. The depleted signatures indicate that some oxidation of depleted sulfide occurred in the basin. It must be noted that the samples with depleted sulfur isotope values have very low sulfate concentrations and therefore even a small amount of sulfide oxidation will bias the ratio. No significant correlation was observed between delta(34)S([SO4]) values and total arsenic contents when all the samples were considered. However, the wells in the central basin do appear to become enriched in delta(34)S([SO4]) as arsenic concentration increases. Although there is evidence for sulfate reduction, it is clear that sulfate reduction does not co-precipitate or sequester arsenic. The one sample with high arsenic that is oxidizing cannot be explained by oxidation of pyrite and is likely an indication that there are multiple redox zones that control arsenic speciation but not necessarily its mobilization and contradict the possibility that Fe-oxyhydroxides sorb appreciable amounts of arsenic in this study area. It is evident that this basin like other two young sedimentary basins (Huhhot and Hetao in Inner Mongolia) of northern China with high arsenic groundwater is transporting arsenic at a very slow rate. The data are consistent with the possibility that the traditional models of arsenic mobilization, namely reductive dissolution of Fe-oxyhydroxides, reduction of As(V) to more mobile As(III), and bacteria mediated reactions, are active to varying degrees. It is also likely that different processes control arsenic mobilization at different locations of the basin and more detailed studies along major flow paths upgradient of the high arsenic aquifers will shed more light on the mechanisms.


Subject(s)
Arsenic/analysis , Sulfur Isotopes/analysis , Water Pollutants, Chemical/analysis , Water Supply/analysis , China , Environmental Monitoring , Geological Phenomena , Iron/analysis , Manganese/analysis , Molybdenum/analysis , Nitrates/analysis , Oxidation-Reduction/drug effects , Uranium/analysis , Water Movements
8.
Environ Geochem Health ; 31(4): 493-502, 2009 Aug.
Article in English | MEDLINE | ID: mdl-18763040

ABSTRACT

Understanding the mechanism of arsenic (As) mobilization from sediments to groundwater is important for water quality management in areas of endemic arsenic poisoning, such as the Datong basin in northern China. The bulk geochemistry analysis of sediment samples from three 50-m boreholes drilled specifically for this study at As-contaminated aquifers, the groundwaters of which have an As concentration up to 1060 microg/l, revealed that the average bulk concentrations of major and trace elements of the samples are similar to those of the average upper continental crust. The average As content of the sediment samples (18.7 mg/kg) is higher than that of modern unconsolidated sediments (5-10 mg/kg). Moreover, the abundance of elements varied with grain size, with higher concentrations in finer fractions of the sediments, such as silt and clay. The concentration of NH(2)OH-HCl-extracted iron (Fe) strongly correlated with that of extracted As, suggesting that Fe oxyhydroxides may be the major sink of As in the aquifer. The results of microcosm experiments showed that As mobilization from sediments to groundwater is probably mainly related to changes in the redox conditions, with moderately reducing conditions being favorable for As release from sediments into groundwater.


Subject(s)
Arsenic/analysis , Fresh Water/chemistry , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Water Supply/analysis , China , Environmental Monitoring , Ferric Compounds/analysis , Geologic Sediments/classification , Iron/analysis , Manganese/analysis , Oxidation-Reduction , Trace Elements/analysis , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...