Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Autophagy ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762760

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV) nonstructural protein (NSs) is an important viral virulence factor that sequesters multiple antiviral proteins into inclusion bodies to escape the antiviral innate immune response. However, the mechanism of the NSs restricting host innate immunity remains largely elusive. Here, we found that the NSs induced complete macroautophagy/autophagy by interacting with the CCD domain of BECN1, thereby promoting the formation of a BECN1-dependent autophagy initiation complex. Importantly, our data showed that the NSs sequestered antiviral proteins such as TBK1 into autophagic vesicles, and therefore promoted the degradation of TBK1 and other antiviral proteins. In addition, the 8A mutant of NSs reduced the induction of BECN1-dependent autophagy flux and degradation of antiviral immune proteins. In conclusion, our results indicated that SFTSV NSs sequesters antiviral proteins into autophagic vesicles for degradation and to escape antiviral immune responses.

2.
Sci Rep ; 14(1): 10651, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724545

ABSTRACT

Herpesviruses are large double-stranded DNA viruses that cause infections in animals and humans with a characteristic of latent infectious within specific tissues. Bats are natural hosts of variety human-infecting viruses and recently have been described as hosts for herpesviruses in several countries around the world. In this study we collected 140 insectivorous bats in the neighboring urban areas of Wuhan City, Hubei Province in the central China between 2020 and 2021. Nested PCR targeting the dpol gene sequence indicated that a total of 22 individuals (15.7% of the sample) tested positive for herpesvirus with 4 strains belonging to the genus Betaherpesvirus and the remaining 18 strains classified as Gammahersvirus. Furthermore, the herpesvirus prevalence in Rhinolophus pusillus was higher at 26.3%, compared to 8.4% in Myotis davidii. The RP701 strain from R. pusillus was the predominant gammaherpesvirus strain detected in bats, accounting for 94.4% (17/18) of all strains. The variations in γ-herpesviruses genomic sequences was evident in phylogenetic tree, where RP701 strain was clustered together with ruminant γ-herpesviruses, while MD704 strain formed a distinct clade with a hedgehog γ-herpesvirus. Four betaherpesviruses exclusively identified from M. davidii, with nucleotide identities ranging from 79.7 to 82.6% compared to known betaherpesviruses. Our study provided evidence that M. davidii can sever as natural host for ß-herpesviruses, which extended the host species range. In conclusion, we found that bats from central China harbored novel ß-herpesviruses and γ-herpesviruses which were phylogenetically related to ruminant γ-herpesvirus and hedgehog γ-herpesvirus. Our study indicates that bats are natural hosts of ß- and γ-herpesviruses and further studies are needed to determine whether there is cross-species transmission of herpesviruses between bats and other animals, or humans.


Subject(s)
Betaherpesvirinae , Chiroptera , Gammaherpesvirinae , Herpesviridae Infections , Phylogeny , Animals , Chiroptera/virology , China/epidemiology , Gammaherpesvirinae/genetics , Gammaherpesvirinae/isolation & purification , Gammaherpesvirinae/classification , Betaherpesvirinae/genetics , Betaherpesvirinae/isolation & purification , Betaherpesvirinae/classification , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/epidemiology , Genome, Viral , DNA, Viral/genetics
3.
J Clin Ultrasound ; 52(3): 305-314, 2024.
Article in English | MEDLINE | ID: mdl-38149658

ABSTRACT

OBJECTIVES: Radiomics-based eXtreme gradient boosting (XGBoost) model was developed to differentiate benign thyroid nodules from malignant thyroid nodules and to prevent unnecessary thyroid biopsies, including positive and negative effects. METHODS: The study evaluated a data set of ultrasound images of thyroid nodules in patients retrospectively, who initially received ultrasound-guided fine-needle aspiration biopsy (FNAB) for diagnostic purposes. According to ACR TI-RADS, a total of five ultrasound feature categories and the maximum size of the nodule were determined by four radiologists. A radiomics score was developed by the LASSO algorithm from the ultrasound-based radiomics features. An interpretative method based on Shapley additive explanation (SHAP) was developed. XGBoost was compared with ACR TI-RADS for its diagnostic performance and FNAB rate and was compared with six other machine learning models to evaluate the model performance. RESULTS: Finally, 191 thyroid nodules were examined from 177 patients. The radiomics score were calculated using 8 features, which were selected among 789 candidate features generated from the ultrasound images. The model yielded an AUC of 93% in the training cohort and 92% in the test cohort. It outperformed traditional machine learning models in assessing the nature of thyroid nodules. Compared with ACR TI-RADS, the FNAB rate decreased from 34% to 30% in training and from 35% to 41% in test. CONCLUSIONS: The radiomics-based XGBoost model proposed could distinguish benign and malignant thyroid nodules, thereby reduced significantly the number of unnecessary FNAB. It was effective in making preoperative decisions and managing selected patients using the SHAP visual interpretation tools.


Subject(s)
Thyroid Nodule , Humans , Thyroid Nodule/diagnostic imaging , Thyroid Nodule/pathology , Retrospective Studies , Radiomics , Diagnosis, Differential , Ultrasonography/methods , Biopsy, Fine-Needle
4.
Front Plant Sci ; 14: 1078978, 2023.
Article in English | MEDLINE | ID: mdl-36925751

ABSTRACT

Although recent physiological studies demonstrate that flue-cured tobacco preferentially utilizes nitrate ( NO 3 - ) or ammonium nitrate (NH4NO3), and possesses both high- and low-affinity uptake systems for NO 3 - , little is known about the molecular component(s) responsible for acquisition and translocation in this crop. Here we provide experimental data showing that NtNRT1.1B with a 1,785-bp coding sequence exhibited a function in mediating NO 3 - transport associated with tobacco growth on NO 3 - nutrition. Heterologous expression of NtNRT1.1B in the NO 3 - uptake-defective yeast Hp△ynt1 enabled a growth recovery of the mutant on 0.5 mM NO 3 - , suggesting a possible molecular function of NtNRT1.1B in the import of NO 3 - into cells. Transient expression of NtNRT1.1B::green fluorescent protein (GFP) in tobacco leaf cells revealed that NtNRT1.1B targeted mainly the plasma membrane, indicating the possibility of NO 3 - permeation across cell membranes via NtNRT1.1B. Furthermore, promoter activity assays using a GFP marker clearly indicated that NtNRT1.1B transcription in roots may be down-regulated by N starvation and induced by N resupply, including NO 3 - , after 3 days' N depletion. Significantly, constitutive overexpression of NtNRT1.1B could remarkably enhance tobacco growth by showing a higher accumulation of biomass and total N, NO 3 - , and even NH 4 + in plants supplied with NO 3 - ; this NtNRT1.1B-facilitated N acquisition/accumulation could be strengthened by short-term 15N- NO 3 - root influx assays, which showed 15%-20% higher NO 3 - deposition in NtNRT1.1B-overexpressors as well as a high affinity of NtNRT1.1B for NO 3 - at a K m of around 30-45 µM. Together with the detection of NtNRT1.1B promoter activity in the root stele and shoot-stem vascular tissues, and higher NO 3 - in both xylem exudate and the apoplastic washing fluid of NtNRT1.1B-transgenic lines, NtNRT1.1B could be considered as a valuable molecular breeding target aiming at improving crop N-use efficiency by manipulating the absorption and long-distance distribution/transport of nitrate, thus adding a new functional homolog as a nitrate permease to the plant NRT1 family.

5.
PLoS Negl Trop Dis ; 16(8): e0010698, 2022 08.
Article in English | MEDLINE | ID: mdl-36037170

ABSTRACT

SFTSV, a tick-borne bunyavirus causing a severe hemorrhagic fever termed as severe fever with thrombocytopenia syndrome (SFTS). To evaluate the potential role of rodents and its ectoparasitic chiggers in the transmission of SFTSV, we collected wild rodents and chiggers on their bodies from a rural area in Qingdao City, Shandong Province, China in September 2020. PCR amplification of the M and L segments of SFTSV showed that 32.3% (10/31) of rodents and 0.2% (1/564) of chiggers (Leptotrombidium deliense) from the rodents were positive to SFTSV. Our results suggested that rodents and chiggers may play an important role in the transmission of SFTSV, although the efficiency of chiggers to transmit SFTSV needs to be further investigated experimentally.


Subject(s)
Bunyaviridae Infections , Mite Infestations , Phlebovirus , Ticks , Trombiculidae , Animals , China/epidemiology , Fever , Phlebovirus/genetics , Rodentia
6.
Plant Signal Behav ; 17(1): 2081420, 2022 12 31.
Article in English | MEDLINE | ID: mdl-35642507

ABSTRACT

Dehydration-responsive element-binding proteins (DREBs) belong to members of the AP2/ERF transcription factor superfamily, which has been reported to involve various abiotic-stress responses and tolerance in plants. However, research on the DREB-family is still limited in alfalfa (Medicago sativa L.), a forage legume cultivated worldwide. The recent genome-sequence release of the alfalfa cultivar "XinJiangDaYe" allowed us to identify 172 DREBs by a multi-step homolog search. The phylogenetic analysis indicated that such MsDREBs could be classified into 5 groups, namely A-1 (56 members), A-2 (39), A-3 (3), A-4 (61) and 13 (A-5 (13), thus adding substantial new members to the DREB-family in alfalfa. Furthermore, a comprehensive survey in silico of conserved motif, gene structure, molecular weight, and isoelectric point (pI) as well as gene expression was conducted. The resulting data showed that, for cold-stress response, 33 differentially expressed MsDREBs were identified with a threshold of Log2-fold > 1, and most of which were transcriptionally upregulated within 48 h during a cold treatment(s). Moreover, the expression profiling of MsDREBs from two ecotypes of alfalfa subspecies i.e. M. sativa ssp. falcata (F56, from a colder region of Central Asia) and M. sativa ssp. sativa (B47, from Near East) revealed that most of the cold-stress responsive MsDREBs exhibited a significantly lower expression in F56, leading to a proposal of the existence of a distinct mechanism(s) for cold tolerance regulated by DREB-related action, which would have been evolved in alfalfa with a genotypic specificity. Additionally, by examining the transcriptome of a freezing-tolerance species (M. sativa cv. Zhaodong), eight DREBs were found to be implicated in a long-term freezing-stress adaptation with a great potential. Taken together, the current genome-wide identification in alfalfa points to the importance of some MsDREBs in the cold-stress response, providing some promising molecular targets to be functionally characterized for the improvement of cold tolerance in crops including alfalfa.


Subject(s)
Cold-Shock Response , Medicago sativa , Cold-Shock Response/genetics , Gene Expression Regulation, Plant/genetics , Medicago sativa/genetics , Medicago sativa/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
7.
Front Plant Sci ; 13: 783597, 2022.
Article in English | MEDLINE | ID: mdl-35401587

ABSTRACT

Polyamine(s) (PA, PAs), a sort of N-containing and polycationic compound synthesized in almost all organisms, has been recently paid considerable attention due to its multifarious actions in the potent modulation of plant growth, development, and response to abiotic/biotic stresses. PAs in cells/tissues occur mainly in free or (non- or) conjugated forms by binding to various molecules including DNA/RNA, proteins, and (membrane-)phospholipids, thus regulating diverse molecular and cellular processes as shown mostly in animals. Although many studies have reported that an increase in internal PA may be beneficial to plant growth under abiotic conditions, leading to a suggestion of improving plant stress adaption by the elevation of endogenous PA via supply or molecular engineering of its biosynthesis, such achievements focus mainly on PA homeostasis/metabolism rather than PA-mediated molecular/cellular signaling cascades. In this study, to advance our understanding of PA biological actions important for plant stress acclimation, we gathered some significant research data to succinctly describe and discuss, in general, PA synthesis/catabolism, as well as PA as an internal ameliorator to regulate stress adaptions. Particularly, for the recently uncovered phenomenon of urea-antagonized NH4 +-stress, from a molecular and physiological perspective, we rationally proposed the possibility of the existence of PA-facilitated signal transduction pathways in plant tolerance to NH4 +-stress. This may be a more interesting issue for in-depth understanding of PA-involved growth acclimation to miscellaneous stresses in future studies.

8.
One Health ; 13: 100332, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34604493

ABSTRACT

The emerging coronavirus diseases such as COVID-19, MERS, and SARS indicated that animal coronaviruses (CoVs) spillover to humans are a huge threat to public health. Therefore, we needed to understand the CoVs carried by various animals. Wild hedgehogs were collected from rural areas in Wuhan and Xianning cities in Hubei Province for analysis of CoVs. PCR results showed that 5 out of 51 (9.8%) hedgehogs (Erinaceus amurensis) were positive to CoVs in Hubei Province with 3 samples from Wuhan City and 2 samples from Xianning City. Phylogenetic analysis based on the partial sequence of RNA-dependent RNA polymerase showed that the CoVs from hedgehogs are classified into Merbecovirus of the genus Betacoronavirus; the hedgehog CoVs formed a phylogenetic sister cluster with human MERS-CoVs and bat MERS-related CoVs. Among the 12 most critical residues of receptor binding domain in MERS-CoV for binding human Dipeptidyl peptidase 4, 3 residuals were conserved between the hedgehog MERS-related CoV obtained in this study and the human MERS-CoV. We concluded that hedgehogs from Hubei Province carried MERS-related CoVs, indicating that hedgehogs might be important in the evolution and transmission of MERS-CoVs, and continuous surveillance of CoVs in hedgehogs was important.

9.
Bull Environ Contam Toxicol ; 106(5): 878-883, 2021 May.
Article in English | MEDLINE | ID: mdl-33811509

ABSTRACT

Tobacco readily accumulates cadmium (Cd), an unnecessary and poisonous element. A total of 107 soil and tobacco leaf samples were collected from South China, to clarify the quantitative relationship between soil properties and Cd content in tobacco leaves. The results showed that 86.9% of the total sampling points had soil cadmium in excess of standard value, and the ratio of active Cd content to total soil Cd content was 24.0%. The enrichment factor of tobacco Cd was 3.43. There was a significant positive correlation between Cd concentration in tobacco leaves and soil Cd content. Soil pH, organic matter and cation exchange amount were negatively correlated with the Cd enrichment factor of tobacco. This present study has provided a regression model of tobacco Cd content based on soil factors, which could accurately predict Cd content in different parts of tobacco.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , China , Plant Leaves/chemistry , Soil , Soil Pollutants/analysis , Nicotiana
10.
PLoS Negl Trop Dis ; 15(1): e0008975, 2021 01.
Article in English | MEDLINE | ID: mdl-33411805

ABSTRACT

Wuhan City (WH) in China was the first place to report COVID-19 in the world and the outbreak of COVID-19 was controlled in March of 2020 in WH. It is unclear what percentage of people were infected with SARS-CoV-2 and what percentage of population is carriers of SARS-CoV-2 in WH. We retrospectively analyzed the SARS-CoV-2 IgG and IgM antibody positive rates in 63,107 healthy individuals from WH and other places of China using commercial colloidal gold detection kits from March 6 to May 3, 2020. Statistical approaches were utilized to explore the difference and correlation for the seropositive rate of IgG and IgM antibody on the basis of sex, age group, geographic region and detection date. The total IgG and IgM antibody positive rate of SARS-CoV-2 was 1.68% (186/11,086) in WH, 0.59% (226/38,171) in Hubei Province without Wuhan (HB), and 0.38% (53/13,850) in the nation except for Hubei Province (CN), respectively. The IgM positive rate was 0.46% (51/11,086) in WH, 0.13% (51/38,171) in HB, and 0.07% (10/13,850) in CN. The incidence of IgM positive rates in healthy individuals increased from March 6 to May 3, 2020 in WH. Female and older age had a higher probability of becoming infected than males (OR = 1.34; 95% CI: 1.08-1.65) or younger age (OR = 2.25; 95% CI: 1.06-4.78). The seroprevalence of SARS-CoV-2 was relatively low in WH and other places of China, but it is significantly high in WH than other places of China; a large amount of asymptomatic carriers of SARS-CoV-2 existed after elimination of clinical cases of COVID-19 in Wuhan City. Therefore, SARS-CoV-2 may exist in a population without clinical cases for a long period.


Subject(s)
COVID-19/epidemiology , Carrier State/epidemiology , SARS-CoV-2/immunology , Adolescent , Adult , Age Factors , Antibodies, Viral/blood , China/epidemiology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Logistic Models , Male , Middle Aged , Retrospective Studies , Seroepidemiologic Studies , Sex Factors , Time Factors , Young Adult
11.
Front Microbiol ; 12: 759374, 2021.
Article in English | MEDLINE | ID: mdl-35082764

ABSTRACT

Long-term conventional shallow tillage reduced soil quality and limited the agriculture development. Intermittent deep tillage could effectively promote agricultural production, through optimizing soil structure, underground ecology system, and soil fertility. However, the microecological mechanism of intermittent deep tillage promoting agriculture production has never been reported, and the effect of tillage depth on crop growth has not been explored in detail. In this study, three levels of intermittent deep tillage (30, 40, and 50 cm) treatments were conducted in an experimental field site with over 10 years of conventional shallow tillage (20 cm). Our results indicated that intermittent deep tillage practices helped to improve plant physiological growth status, chlorophyll a, and resistance to diseases, and the crop yield and value of output were increased with the deeper tillage practices. Crop yield (18.59%) and value of output (37.03%) were highest in IDT-50. There were three mechanisms of intermittent deep tillage practices that improved crop growth: (1) Intermittent deep tillage practices increased soil nutrients and root system architecture traits, which improved the fertility and nutrient uptake of crop through root system. (2) Changing rhizosphere environments, especially for root length, root tips, pH, and available potassium contributed to dissimilarity of bacterial communities and enriched plant growth-promoting species. (3) Functions associated with stress tolerance, including signal transduction and biosynthesis of other secondary metabolites were increased significantly in intermittent deep tillage treatments. Moreover, IDT-30 only increased soil characters and root system architecture traits compared with CK, but deeper tillage could also change rhizosphere bacterial communities and functional profiles. Plant height and stem girth in IDT-40 and IDT-50 were higher compared with IDT-30, and infection rates of black shank and black root rot in IDT-50 were even lower in IDT-40. The study provided a comprehensive explanation into the effects of intermittent deep tillage in plant production and suggested an optimal depth.

12.
Water Sci Technol ; 82(6): 1092-1101, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33055399

ABSTRACT

With its advantages of ecological safety, environmental affinity, and high selectivity, allelopathic technology has been widely developed for algae inhibition. However, obtaining effective allelochemicals and realizing their mechanism are difficult. In this paper, a Chinese herbal medicine, namely, Rheum palmatum L. (Chinese rhubarb), was utilized as a source of allelopathic substances for the first time. Four units of rhubarb organic extracts were collected to study the inhibition of growth, photosynthesis, proteins, and algal toxin of Microcystis aeruginosa. Results showed that the ethyl acetate, n-butanol, and aqueous phases of the rhubarb extracts have notable inhibitory effects. After a 16-day treatment, the four extracts reduced M. aeruginosa by 64.1%, 59.3%, 61.9%, and 7.2% with disruption of algal photosynthesis and protein synthesis and reduction of algal toxin.


Subject(s)
Microcystis , Rheum , Pheromones , Photosynthesis , Plant Extracts
13.
Environ Sci Pollut Res Int ; 27(30): 37410-37418, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32399872

ABSTRACT

Cadmium (Cd) pollution threatens agricultural security worldwide. This study tested the efficacy of priming chemicals to decrease Cd uptake by tobacco plants (Nicotiana tabacum). After initial screening from nine different chemicals (NaCl, Cd(CH3COO)2, Cd(NO3)2, CdCl2, KHNO3, polyethylene glycol 6000 (PEG-6000), indole-3-acetic acid (IAA), ß-aminobutyric acid (BABA), and glutathione (GSH)), NaCl and PEG-6000 were further investigated because of their low risks to plant growth and efficiency to Cd reduction. Priming procedures (concentrations) were optimized for both chemicals and the best one (100 mM NaCl) was used to test both soil and hydroponic media. The results showed 31.3% lower Cd concentrations in shoots after priming with 100 mM NaCl. Phenotype parameters of the plants were also measured and showed no significant impacts of the priming procedures on the shoot biomass and the uptakes of nitrogen (N), phosphorus (P), and potassium (K), nor the photosynthetic capacity (net photosynthesis rate (Pn) and chlorophyll concentration (SPAD)). Histological observations of the roots showed a significant increase of the stele diameter after NaCl priming and a subsequent negative correlation between shoot Cd concentration and stele diameter was found after NaCl priming at different levels. This study confirmed 100 mM NaCl as an efficient priming treatment to decrease Cd uptake and the coarsening of the root stele was identified as a potential explanation for the observed decrease of Cd in tobacco shoots.


Subject(s)
Cadmium , Soil Pollutants , Chlorophyll , Photosynthesis , Plant Roots , Sodium Chloride , Nicotiana
14.
Ecotoxicol Environ Saf ; 169: 240-247, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30453171

ABSTRACT

Tobacco leaves usually accumulate and concentrate high levels of cadmium (Cd) when growing in contaminated soil, and the transfer of Cd through tobacco smoke to human body could cause serious health risks. In this study, we explored the impact of biofertilizers on alleviating Cd-induced growth inhibition of tobacco leaves. Tobacco (Nicotiana tabacum L.) was planted in three naturally Cd-polluted soils from Chinese main tobacco-planting areas. Adding biofertilizer alleviated Cd-induced degradation of tobacco leaves quality, represented by the balanced K, Cl, N, nicotine or sugar contents and their ratios; Cd reduction rate of tobacco leaves was increased and soil extractable Cd was decreased, when compared with CK (no extra biofertilizer addition). The following changing tendencies were believed to be responsible for immobilizing soil Cd and alleviating its toxicity to tobacco leaves: the re-distribution of Cd from the fraction of smaller soil aggregates to the fraction of larger soil aggregates; and the shift of major soil microbes by increasing the abundance of beneficial taxa such as those from the phyla Actinobacteria, Proteobacteria or Chloroflexi. In all biofertilizer treatments, the effectiveness in mitigating Cd toxicity to tobacco leaves was dependent on the type of biofertilizer and soil applied. This study provides a feasible way to control or reduce Cd toxicity for sustainable tobacco production.


Subject(s)
Cadmium/toxicity , Fertilizers/analysis , Manure/analysis , Nicotiana/drug effects , Soil Microbiology/standards , Soil Pollutants/toxicity , Soil/chemistry , Cadmium/metabolism , China , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Soil Pollutants/metabolism , Nicotiana/growth & development , Nicotiana/metabolism
15.
Ecotoxicol Environ Saf ; 170: 68-76, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30529622

ABSTRACT

Melatonin is a multifunctional signaling molecule that regulates broad aspects of responses to environmental stresses in plants. Cadmium (Cd) is a persistent soil contaminant that is toxic to all living organisms. Recent reports have uncovered the protective role of melatonin in alleviating Cd phytotoxicity, but little is known about its regulatory mechanisms in plants. In this study, we found that foliar application of melatonin (in particular 100 µmol L-1) remarkably enhanced Cd tolerance of tobacco (Nicotiana tabacum L.) leaves, as evidenced by less Cd accumulation and alleviation of growth inhibition and photoinhibition, compared with nontreated Cd-stressed plants. The addition of melatonin also controlled oxidative damage of Cd on tobacco through direct scavenging and by enhancing the activities of antioxidative enzymes. Melatonin application promoted Cd sequestration in the cell wall and vacuoles based on the analysis of subcellular distribution of Cd in tobacco cells. Structural equation modeling (SEM) analysis revealed that melatonin-induced Cd tolerance in tobacco leaves was modulated by the expression of Cd-transport genes. Molecular evidence illustrated that modulation of IRT1, Nramp1, HMA2, HMA4, and HMA3 genes caused by melatonin could be responsible for weakening Cd uptake, Cd transportation to xylem, and intensifying Cd sequestration into the root vacuoles.


Subject(s)
Cadmium/toxicity , Melatonin/pharmacology , Nicotiana/drug effects , Antioxidants/pharmacology , Gene Expression Regulation, Plant , Oxidative Stress/drug effects , Plant Development/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological , Nicotiana/genetics , Nicotiana/metabolism , Vacuoles/drug effects , Vacuoles/metabolism , Xylem/drug effects , Xylem/metabolism
16.
J Org Chem ; 76(8): 2459-64, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21401088

ABSTRACT

A three-component cyclization reaction was designed for synthesizing cyclic carbonates in a single operation from phenacyl bromide, CO(2), and aldehyde in the presence of lithium diisopropylamide (LDA). These novel reactions were achieved under extremely mild conditions to generate the target products in moderate to good yields within 10 min.

17.
J Med Chem ; 49(14): 4048-51, 2006 Jul 13.
Article in English | MEDLINE | ID: mdl-16821765

ABSTRACT

The dopamine transporter plays an important role in the molecular mechanism of cocaine dependence. It is suggested that inhibitors of the dopamine transporter would have strong therapeutic potential. Here we report that aromatic modification can constrain a linear peptide into the beta-turn conformation, which is preferred by the dopamine transporter. On the basis of this finding, a novel selective and competitive peptidic inhibitor of the dopamine transporter was developed. The peptide binds to the dopamine- and cocaine-binding site of the dopamine transporter and has behavioral effects different from those of cocaine in mice.


Subject(s)
Benzoates/chemical synthesis , Biphenyl Compounds/chemical synthesis , Central Nervous System Stimulants/chemical synthesis , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Naphthalenes/chemical synthesis , Oligopeptides/chemical synthesis , Animals , Benzoates/chemistry , Benzoates/pharmacology , Binding Sites , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , CHO Cells , Central Nervous System Stimulants/chemistry , Central Nervous System Stimulants/pharmacology , Cocaine/metabolism , Conditioning, Psychological/drug effects , Cricetinae , Cricetulus , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/chemistry , Dopamine Plasma Membrane Transport Proteins/metabolism , Mice , Motor Activity/drug effects , Naphthalenes/chemistry , Naphthalenes/pharmacology , Oligopeptides/chemistry , Oligopeptides/pharmacology , Protein Structure, Secondary , Radioligand Assay , Rats , Reward , Structure-Activity Relationship
18.
Neuroreport ; 15(1): 9-12, 2004 Jan 19.
Article in English | MEDLINE | ID: mdl-15106822

ABSTRACT

There is increasing evidence that GABAergic system plays an important role in the neural control of learning and memory processes. GAT1 over-expressing mice (NA) were generated, in which GAT1 is under the control of a neuron-specific enolase (NSE) promoter, to investigate effects of GABA transporter on cognitive function. Our results revealed that NA mice displayed cognitive deterioration in associative learning ability and new object recognition retention, compared with the wild-type littermates (WT2). However, the impaired cognitive function of transgenic mice could be rescued after chronic administration of GAT1 selective inhibitor for 6 days. In addition, there was no change of the expression of NMDA receptors in NA mice. Taken together, we show a potentially important role for GAT1 in the neural control of cognitive processes, and indicate great potential for GAT1 as a clinical target of cognitive disorders.


Subject(s)
Carrier Proteins/biosynthesis , Carrier Proteins/genetics , Cognition Disorders/metabolism , Gene Expression Regulation/physiology , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Membrane Transport Proteins , Organic Anion Transporters , Animals , Avoidance Learning/physiology , Cerebral Cortex/metabolism , Cognition Disorders/genetics , GABA Plasma Membrane Transport Proteins , Hippocampus/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphopyruvate Hydratase/biosynthesis , Phosphopyruvate Hydratase/genetics , Receptors, N-Methyl-D-Aspartate/biosynthesis , Receptors, N-Methyl-D-Aspartate/genetics
19.
J Neurosci Res ; 73(4): 565-72, 2003 Aug 15.
Article in English | MEDLINE | ID: mdl-12898541

ABSTRACT

The present study focused on the involvement of gamma-aminobutyric acid transporter I (GAT1) in pain. We found that GABA uptake was increased in mouse spinal cord at 20 min and 120 min after formalin injection and in mouse brain at 120 min, but not 20 min, after formalin injection. In addition, the antinociceptive effects of GAT1-selective inhibitors were examined using assays of thermal (tail-flick) and chemical (formalin and acetic acid) nociception in C57BL/6J mice. The GAT1-selective inhibitors, ethyl nipecotate and NO-711, exhibited significant antinociceptive effects in these nociceptive assays. To study further the effects of GAT1 on pain, we used two kinds of GAT1-overexpressing transgenic mice (under the control of a CMV promoter or a NSE promoter) to examine the nociceptive responses in these mice. In the thermal, formalin, and acetic acid assays, both kinds of transgenic mice displayed significant hyperalgesia after nociceptive stimuli. In addition, the micro opioid receptor antagonist naloxone had no influence on nociceptive responses in wild-type and transgenic mice. The results indicate that GAT1 is involved in the regulation of pain processes, and point to the possibility of developing analgesic drugs that target GAT1 other than opioid receptors.


Subject(s)
Carrier Proteins/metabolism , Hyperalgesia/metabolism , Membrane Proteins/metabolism , Membrane Transport Proteins , Organic Anion Transporters , gamma-Aminobutyric Acid/metabolism , Analgesics, Opioid/pharmacology , Analysis of Variance , Animals , Brain/anatomy & histology , Brain/metabolism , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/physiology , Dose-Response Relationship, Drug , Drug Tolerance , Formaldehyde/adverse effects , GABA Antagonists/pharmacology , GABA Plasma Membrane Transport Proteins , Hyperalgesia/chemically induced , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Morphine/pharmacology , Nipecotic Acids/pharmacology , Oximes/pharmacology , Pain Measurement/drug effects , RNA, Messenger/biosynthesis , Reaction Time/drug effects , Reaction Time/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Spinal Cord/metabolism , Substance-Related Disorders/metabolism , Synaptosomes/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...