Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38558503

ABSTRACT

The blood-brain barrier presents a key limitation to the administration of therapeutic molecules for the treatment of brain disease. While drugs administered orally or intravenously must cross this barrier to reach brain targets, the unique anatomical structure of the olfactory system provides a route to deliver drugs directly to the brain. Entering the brain via receptor, carrier, and adsorption-mediated transcytosis in the nasal olfactory and trigeminal regions has the potential to increase drug delivery. In this review, we introduce the physiological and anatomical structures of the nasal cavity, and summarize the possible modes of transport and the relevant receptors and carriers in the nose-to-brain pathway. Additionally, we provide examples of nanotherapeutics developed for intranasal drug delivery to the brain. Further development of nanoparticles that can be applied to intranasal delivery systems promises to improve drug efficacy and reduce drug resistance and adverse effects by increasing molecular access to the brain. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.


Subject(s)
Brain , Nanoparticles , Brain/metabolism , Blood-Brain Barrier/metabolism , Administration, Intranasal , Pharmaceutical Preparations , Drug Delivery Systems , Nanoparticles/chemistry
2.
Virol Sin ; 39(2): 290-300, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38331038

ABSTRACT

Coxsackievirus B3 (CVB3) is the pathogen causing hand, foot and mouth disease (HFMD), which manifests across a spectrum of clinical severity from mild to severe. However, CVB3-infected mouse models mainly demonstrate viral myocarditis and pancreatitis, failing to replicate human HFMD symptoms. Although several enteroviruses have been evaluated in Syrian hamsters and rhesus monkeys, there is no comprehensive data on CVB3. In this study, we have first tested the susceptibility of Syrian hamsters to CVB3 infection via different routes. The results showed that Syrian hamsters were successfully infected with CVB3 by intraperitoneal injection or nasal drip, leading to nasopharyngeal colonization, acute severe pathological injury, and typical HFMD symptoms. Notably, the nasal drip group exhibited a longer viral excretion cycle and more severe pathological damage. In the subsequent study, rhesus monkeys infected with CVB3 through nasal drips also presented signs of HFMD symptoms, viral excretion, serum antibody conversion, viral nucleic acids and antigens, and the specific organ damages, particularly in the heart. Surprisingly, there were no significant differences in myocardial enzyme levels, and the clinical symptoms resembled those often associated with common, mild infections. In summary, the study successfully developed severe Syrian hamsters and mild rhesus monkey models for CVB3-induced HFMD. These models could serve as a basis for understanding the disease pathogenesis, conducting pre-trial prevention and evaluation, and implementing post-exposure intervention.


Subject(s)
Disease Models, Animal , Enterovirus B, Human , Hand, Foot and Mouth Disease , Macaca mulatta , Mesocricetus , Animals , Hand, Foot and Mouth Disease/virology , Hand, Foot and Mouth Disease/pathology , Enterovirus B, Human/pathogenicity , Antibodies, Viral/blood , Cricetinae , Female , Virus Shedding , Nasopharynx/virology , Male
3.
Inorg Chem ; 62(38): 15440-15449, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37700509

ABSTRACT

Lithium-sulfur (Li-S) batteries are considered as promising candidates for next-generation batteries due to their high theoretical energy density. However, the practical application of Li-S batteries is still hindered by several challenges, such as the polysulfide shuttle and the growth of lithium dendrites. Herein, we introduce a bifunctional K3PW12O40/graphene oxide-modified polypropylene separator (KPW/GO/PP) as a highly effective solution for mitigating polysulfide diffusion and protecting the lithium anode in Li-S batteries. By incorporating KPW into a densely stacked nanostructured graphene oxide (GO) barrier membrane, we synergistically capture and rapidly convert lithium polysulfides (LiPSs) electrochemically, thus effectively suppressing the shuttling effect. Moreover, the KPW/GO/PP separator can stabilize the lithium metal anode during cycling, suppress dendrite formation, and ensure a smooth and dense lithium metal surface, owing to regulated Li+ flux and uniform Li nucleation. Consequently, the constructed KPW/GO/PP separator delivered a favorable initial specific capacity (1006 mAh g-1) and remarkable cycling performance at 1.0 C (626 mAh g-1 for up to 500 cycles with a decay rate of 0.075% per cycle).

4.
Front Microbiol ; 13: 959315, 2022.
Article in English | MEDLINE | ID: mdl-36225360

ABSTRACT

To explore the relationship between the changes in the physiological period and the fecal microbial population of female rhesus monkeys by measuring microbial composition of fecal samples and the serum hormones. Blood and fecal samples were collected from six female adult rhesus monkeys during the menstrual period (MP), ovulation period (OP), and Luteal period (LP). Serum estradiol (E2) and progesterone (P) levels were determined by the chemiluminescence method and the stool samples were subjected to high-throughput 16S rRNA sequencing. The highest level of E2 and P secretions were during the MP, and LP, respectively. Stool samples produced valid sequences and the number of operational taxonomic unit/OTU was: 810056/3756 (MP), 845242/4159 (OP), 881560/3970 (LP). At the phylum level, the three groups of Firmicutes and Bacteroides accounted for > 95%. The dominant flora at the LP was Bacteroides (53.85%), the dominant flora at the MP and OP was Firmicutes, 64.08 and 56.53%, respectively. At the genus level, the dominant genus at the LP was Prevotella, the dominant genera at the MP were Prevotella, Oncococcus, Streptococcus, and Kurtella. The dominant genera at OP were Prevotella and Nocococcus. At the phylum level, P levels were negatively correlated to Firmicutes, Actinomycetes Actinobacteria, and Fibrobacteres, but positively correlated to Bacteroidetes. Likewise, E2 was positively correlated to Proteobacteria but negatively correlated to Euryarchaeota. At the genus level, P hormone showed a significant correlation with 16 bacterial species, and E2 was significantly correlated to seven bacterial species. Function prediction analysis revealed a high similarity between the MP and OP with six differentially functional genes (DFGs) between them and 11 DFGs between OP and LP (P < 0.05). Fecal microbiota types of female rhesus monkeys varied with different stages of the menstrual cycle, possibly related to changes in hormone levels.

5.
Front Immunol ; 13: 931740, 2022.
Article in English | MEDLINE | ID: mdl-35865514

ABSTRACT

Due to viral envelope glycoprotein D binding to cellular membrane HVEM receptor, HSV-1 can infect certain dendritic cells, which becomes an event in the viral strategy to interfere with the host's immune system. We previously generated the HSV-1 mutant strain M6, which produced an attenuated phenotype in mice and rhesus monkeys. The attenuated M6 strain was used to investigate how HSV-1 infection of dendritic cells interferes with both innate and adaptive immunity. Our study showed that dendritic cells membrane HVEM receptors could mediate infection of the wild-type strain and attenuated M6 strain and that dendritic cells infected by both viruses in local tissues of animals exhibited changes in transcriptional profiles associated with innate immune and inflammatory responses. The infection of pDCs and cDCs by the two strains promoted cell differentiation to the CD103+ phenotype, but varied transcriptional profiles were observed, implying a strategy that the HSV-1 wild-type strain interferes with antiviral immunity, probably due to viral modification of the immunological phenotype of dendritic cells during processing and presentation of antigen to T cells, leading to a series of deviations in immune responses, ultimately generating the deficient immune phenotype observed in infected individuals in the clinical.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Animals , Dendritic Cells/metabolism , Herpesvirus 1, Human/genetics , Mice , Phenotype , Viral Envelope Proteins
6.
Virol Sin ; 37(4): 610-618, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35777657

ABSTRACT

Coxsackievirus A10 (CV-A10) is one of the etiological agents associated with hand, foot and mouth disease (HFMD) and also causes a variety of illnesses in humans, including pneumonia, and myocarditis. Different people, particularly young children, may have different immunological responses to infection. Current CV-A10 infection animal models provide only a rudimentary understanding of the pathogenesis and effects of this virus. The characteristics of CV-A10 infection, replication, and shedding in humans remain unknown. In this study, rhesus macaques were infected by CV-A10 via respiratory or digestive route to mimic the HFMD in humans. The clinical symptoms, viral shedding, inflammatory response and pathologic changes were investigated in acute infection (1-11 day post infection) and recovery period (12-180 day post infection). All infected rhesus macaques during acute infection showed obvious viremia and clinical symptoms which were comparable to those observed in humans. Substantial inflammatory pathological damages were observed in multi-organs, including the lung, heart, liver, and kidney. During the acute period, all rhesus macaques displayed clinical signs, viral shedding, normalization of serum cytokines, and increased serum neutralizing antibodies, whereas inflammatory factors caused some animals to develop severe hyperglycemia during the recovery period. In addition, there were no significant differences between respiratory and digestive tract infected animals. Overall, all data presented suggest that the rhesus macaques provide the first non-human primate animal model for investigating CV-A10 pathophysiology and assessing the development of potential human therapies.


Subject(s)
Enterovirus A, Human , Hand, Foot and Mouth Disease , Animals , Antibodies, Neutralizing , Benzeneacetamides , Child, Preschool , Humans , Macaca mulatta , Piperidones
8.
Vaccines (Basel) ; 10(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35746536

ABSTRACT

Objective: We constructed two DNA vaccines containing the receptor-binding domain (RBD) genes of multiple SARS-CoV-2 variants and used them in combination with inactivated vaccines in a variety of different protocols to explore potential novel immunization strategies against SARS-CoV-2 variants. Methods: Two DNA vaccine candidates with different signal peptides (namely, secreted and membrane signal peptides) and RBD protein genes of different SARS-CoV-2 strains (Wuhan-Hu-1, B.1.351, B.1.617.2, C.37) were used. Four different combinations of DNA and inactivated vaccines were tested, namely, Group A: three doses of DNA vaccine; B: three doses of DNA vaccine and one dose of inactivated vaccine; C: two doses of inactivated vaccine and one dose of DNA vaccine; and D: coadministration of DNA and inactivated vaccines in two doses. Subgroups were grouped according to the signal peptide used (subgroup 1 contained secreted signal peptides, and subgroup 2 contained membrane signal peptides). The in vitro expression of the DNA vaccines, the humoral and cellular immunity responses of the immunized mice, the immune cell population changes in local lymph nodes, and proinflammatory cytokine levels in serum samples were evaluated. Results: The antibody responses and cellular immunity in Group A were weak for all SARS-CoV-2 strains; for Group B, there was a great enhancement of neutralizing antibody (Nab) titers against the B.1.617.2 variant strain. Group C showed a significant increase in antibody responses (NAb titers against the Wuhan-Hu-1 strain were 768 and 1154 for Group C1 and Group C2, respectively, versus 576) and cellular immune responses, especially for variant B.1.617.2 (3240 (p < 0.001) and 2430 (p < 0.05) for Group C1 and Group C2, versus 450); Group D showed an improvement in immunogenicity. Group C induced higher levels of multiple cytokines. Conclusion: The DNA vaccine candidates we constructed, administered as boosters, could enhance the humoral and cellular immune responses of inactivated vaccines against COVID-19, especially for B.1.617.2.

9.
Viruses ; 14(5)2022 05 14.
Article in English | MEDLINE | ID: mdl-35632787

ABSTRACT

Herpes simplex virus type 1 (HSV-1), an α subgroup member of the human herpesvirus family, infects cells via the binding of its various envelope glycoproteins to cellular membrane receptors, one of which is herpes virus entry mediator (HVEM), expressed on dendritic cells. Here, HVEM gene-deficient mice were used to investigate the immunologic effect elicited by the HSV-1 infection of dendritic cells. Dendritic cells expressing the surface marker CD11c showed an abnormal biological phenotype, including the altered transcription of various immune signaling molecules and inflammatory factors associated with innate immunity after viral replication. Furthermore, the viral infection of dendritic cells interfered with dendritic cell function in the lymph nodes, where these cells normally play roles in activating the T-cell response. Additionally, the mild clinicopathological manifestations observed during the acute phase of HSV-1 infection were associated with viral replication in dendritic cells.


Subject(s)
Herpes Simplex , Herpesviridae Infections , Herpesvirus 1, Human , Animals , Antiviral Agents , Dendritic Cells/pathology , Herpesvirus 1, Human/physiology , Mice
10.
Viruses ; 14(2)2022 01 29.
Article in English | MEDLINE | ID: mdl-35215886

ABSTRACT

Rat hepatitis E virus (rat HEV) was first identified in wild rats and was classified as the species Orthohepevirus C in the genera Orthohepevirus, which is genetically different from the genotypes HEV-1 to HEV-8, which are classified as the species Orthohepevirus A. Although recent reports suggest that rat HEV transmits to humans and causes hepatitis, the infectivity of rat HEV to non-human primates such as cynomolgus and rhesus monkeys remains controversial. To investigate whether rat HEV infects non-human primates, we inoculated one cynomolgus monkey and five rhesus monkeys with a V-105 strain of rat HEV via an intravenous injection. Although no significant elevation of alanine aminotransferase (ALT) was observed, rat HEV RNA was detected in fecal specimens, and seroconversion was observed in all six monkeys. The partial nucleotide sequences of the rat HEV recovered from the rat HEV-infected monkeys were identical to those of the V-105 strain, indicating that the infection was caused by the rat HEV. The rat HEV recovered from the cynomolgus and rhesus monkeys successfully infected both nude and Sprague-Dawley rats. The entire rat HEV genome recovered from nude rats was identical to that of the V-105 strain, suggesting that the rat HEV replicates in monkeys and infectious viruses were released into the fecal specimens. These results demonstrated that cynomolgus and rhesus monkeys are susceptible to rat HEV, and they indicate the possibility of a zoonotic infection of rat HEV. Cynomolgus and rhesus monkeys might be useful as animal models for vaccine development.


Subject(s)
Hepatitis, Viral, Animal/transmission , Hepevirus/physiology , RNA Virus Infections/veterinary , Viral Zoonoses/transmission , Alanine Transaminase/blood , Animals , Antibodies, Viral/blood , Feces/virology , Female , Hepatitis, Viral, Animal/virology , Macaca fascicularis , Macaca mulatta , Male , RNA Virus Infections/transmission , RNA Virus Infections/virology , RNA, Viral/analysis , Rats , Viral Zoonoses/virology , Virus Replication
11.
Emerg Microbes Infect ; 11(1): 212-226, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34931939

ABSTRACT

The recent emergence of COVID-19 variants has necessitated the development of new vaccines that stimulate the formation of high levels of neutralizing antibodies against S antigen variants. A new strategy involves the intradermal administration of heterologous vaccines composed of one or two doses of inactivated vaccine and a booster dose with the mutated S1 protein (K-S). Such vaccines improve the immune efficacy by increasing the neutralizing antibody titers and promoting specific T cell responses against five variants of the RBD protein. A viral challenge test with the B.1.617.2 (Delta) variant confirmed that both administration schedules (i.e. "1 + 1" and "2 + 1") ensured protection against this strain. These results suggest that the aforementioned strategy is effective for protecting against new variants and enhances the anamnestic immune response in the immunized population.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CHO Cells , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Chlorocebus aethiops , Cricetulus , Female , Humans , Macaca mulatta , Mice , Mice, Transgenic , Vaccination , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Vero Cells
12.
Front Cell Infect Microbiol ; 11: 649722, 2021.
Article in English | MEDLINE | ID: mdl-34123868

ABSTRACT

Herpes simplex virus type 2 (HSV2), a pathogen that causes genital herpes lesions, interferes with the host immune system via various known and unknown mechanisms. This virus has been used to study viral antigenic composition. Convalescent serum from HSV2-infected patients was used to identify viral antigens via 2-D protein electrophoresis and immunoblotting. The serum predominantly recognized several capsid scaffold proteins encoded by gene UL26.5, mainly ICP35. This protein has been primarily reported to function temporarily in viral assembly but is not expressed in mature virus particles. Further immunological studies suggested that this protein elicits specific antibody and cytotoxic T lymphocyte (CTL) responses in mice, but these responses do not result in a clinical protective effect in response to HSV2 challenge. The data suggested that immunodominance of ICP35 might be used to design an integrated antigen with other viral glycoproteins.


Subject(s)
Capsid , Herpesvirus 1, Human , Animals , Capsid Proteins , Herpesvirus 2, Human , Humans , Mice , Viral Proteins
13.
Virus Res ; 297: 198358, 2021 05.
Article in English | MEDLINE | ID: mdl-33667623

ABSTRACT

In 2018, a small-scale dengue epidemic broke out in Hunan Province, an inland province in central South China, with 172 people infected. To verify the causative agent, complete genome information was obtained by PCR and sequencing based on the viral RNAs extracted from patient serum samples. Mutation and evolutionary analysis were performed by MEGA7.0 software. The online softwares "Predict protein" and "Mfold" were used to predict the secondary structure of proteins and untranslated regions, respectively. Phylogenetic analysis showed that all five isolates in this study were DENV type 2, which is most closely related to the Zhejiang strain (2017-MH110588). Compared with the DENV-2 standard strain, 773 nucleotide mutations occurred in the isolated strain, of which 666 were nonsense mutations. Of the 80 mutated amino acids, 22 occurred in the structural protein region (2 in C region, 8 in PrM/M region, 12 in E region), and 58 in the non-structural (NS) protein region (9 in NS1 region, 10 in NS2 region, 12 in NS3 region, 7 in NS4 region, 20 in NS5 region). The prM/M region had the highest AA mutation rate, while NS4B was conservative. Three amino acid mutations (E: N390thS, and NS5: S676thN, K800thT) may important for the replication and virulence of the DENV. Secondary structure prediction observed 28 changes in polynucleotide binding regions and 110 changes in protein binding sites of coding sequence. 2 and 4 base substitutions resulted in 2 and 6 significant changes in the RNA secondary structure of 5' UTR and 3' UTR, respectively. Two significant positive selection sites were observed in NS5. To our knowledge, this research is the first complete genome analysis of the epidemic strain of the 2018 dengue outbreak in Hunan and will benefit further research for virus traceability and vaccine development.


Subject(s)
Dengue Virus , Dengue , China/epidemiology , Genome, Viral , Genotype , Humans , Phylogeny , RNA, Viral/chemistry , RNA, Viral/genetics
14.
BMC Infect Dis ; 21(1): 166, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33568111

ABSTRACT

BACKGROUND: An unexpected dengue outbreak occurred in Hunan Province in 2018. This was the first dengue outbreak in this area of inland China, and 172 cases were reported. METHODS: To verify the causative agent of this outbreak and characterise the viral genes, the genes encoding the structural proteins C/prM/E of viruses isolated from local residents were sequenced followed by mutation and phylogenetic analysis. Recombination, selection pressure, potential secondary structure and three-dimensional structure analyses were also performed. RESULTS: Phylogenetic analysis revealed that all epidemic strains were of the cosmopolitan DENV-2 genotype and were most closely related to the Zhejiang strain (MH010629, 2017) and then the Malaysia strain (KJ806803, 2013). Compared with the sequence of DENV-2SS, 151 base substitutions were found in the sequences of 89 isolates; these substitutions resulted in 20 non-synonymous mutations, of which 17 mutations existed in all samples (two in the capsid protein, six in the prM/M proteins, and nine in the envelope proteins). Moreover, amino acid substitutions at the 602nd (E322:Q → H) and 670th (E390: N → S) amino acids may have enhanced the virulence of the epidemic strains. One new DNA binding site and five new protein binding sites were observed. Two polynucleotide binding sites and seven protein binding sites were lost in the epidemic strains compared with DENV-2SS. Meanwhile, five changes were found in helical regions. Minor changes were observed in helical transmembrane and disordered regions. The 429th amino acid of the E protein switched from a histamine (positively charged) to an asparagine (neutral) in all 89 isolated strains. No recombination events or positive selection pressure sites were observed. To our knowledge, this study is the first to analyse the genetic characteristics of epidemic strains in the first dengue outbreak in Hunan Province in inland China. CONCLUSIONS: The causative agent is likely to come from Zhejiang Province, a neighbouring province where dengue fever broke out in 2017. This study may help clarify the intrinsic geographical relatedness of DENV-2 and contribute to further research on pathogenicity and vaccine development.


Subject(s)
Dengue Virus/genetics , Dengue/diagnosis , Viral Envelope Proteins/genetics , Binding Sites , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , China/epidemiology , Dengue/epidemiology , Dengue/virology , Dengue Virus/classification , Dengue Virus/isolation & purification , Disease Outbreaks , Genotype , Humans , Mutation , Phylogeny , Protein Structure, Tertiary , RNA, Viral/chemistry , RNA, Viral/metabolism , Sequence Analysis, RNA , Viral Envelope Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
15.
PLoS One ; 14(9): e0222338, 2019.
Article in English | MEDLINE | ID: mdl-31527891

ABSTRACT

Rhesus macaque is an important animal model in biomedical research, especially human disease, developmental, translational, and pre-clinical research. Blood physiological and biochemical parameters are important markers for physiology, pathology, and toxicology research. However, these parameters have not been systematically reported for Chinese rhesus macaques. To characterize the reference for these parameters, this study collected 1805 Chinese rhesus macaques living in Southwestern China. A total of 24 blood physiological indexes and 27 biochemical parameters were determined. Sex and age were found to affect these parameters. In conclusion, a comprehensive and systematic reference of hematological and biochemical parameters for Chinese rhesus macaque was established in this work on the basis of a large cohort. Such reference will benefit biomedical research employing rhesus macaques as animal models.


Subject(s)
Macaca mulatta/genetics , Macaca mulatta/physiology , Animals , China , Female , Male
16.
Adv Mater ; 31(33): e1900727, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31125138

ABSTRACT

The central nervous system (CNS) plays a central role in the control of sensory and motor functions, and the disruption of its barriers can result in severe and debilitating neurological disorders. Neurotrophins are promising therapeutic agents for neural regeneration in the damaged CNS. However, their penetration across the blood-brain barrier remains a formidable challenge, representing a bottleneck for brain and spinal cord therapy. Herein, a nanocapsule-based delivery system is reported that enables intravenously injected nerve growth factor (NGF) to enter the CNS in healthy mice and nonhuman primates. Under pathological conditions, the delivery of NGF enables neural regeneration, tissue remodeling, and functional recovery in mice with spinal cord injury. This technology can be utilized to deliver other neurotrophins and growth factors to the CNS, opening a new avenue for tissue engineering and the treatment of CNS disorders and neurodegenerative diseases.


Subject(s)
Blood-Brain Barrier/metabolism , Nanocapsules/chemistry , Nerve Growth Factors/pharmacology , Nerve Regeneration/drug effects , Spinal Cord Injuries/drug therapy , Acrylic Resins/chemistry , Animals , Biocompatible Materials/chemistry , Blood-Brain Barrier/ultrastructure , Cross-Linking Reagents/chemistry , Drug Liberation , Injections, Intravenous , Macaca mulatta , Methacrylates/chemistry , Mice, Inbred BALB C , Nerve Growth Factors/administration & dosage , Nerve Growth Factors/blood , Nerve Growth Factors/cerebrospinal fluid , PC12 Cells , Permeability , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/chemistry , Polyesters/chemistry , Rats , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology
17.
Am J Transl Res ; 11(4): 2516-2531, 2019.
Article in English | MEDLINE | ID: mdl-31105859

ABSTRACT

Multiple sclerosis (MS) is a demyelinating disease affecting 2.5 million young people worldwide because of its immune-mediated pathological mechanisms. Recent studies have shown that stem cell transplantation is a new potential therapy for MS. There has been renewed interest in cell therapy to improve quality of life for MS patients. In this study, the experimental autoimmune encephalomyelitis (EAE) model, which is the most commonly model to mimic MS, was successfully established in cynomolgus monkeys. To evaluate the therapeutic effect of human umbilical cord mesenchymal stem cells (UCMSCs) on MS, we intravenously transplanted UCMSCs into cynomolgus monkeys with EAE. Our results showed that UCMSC transplantation significantly ameliorated the clinical symptoms of MS. Magnetic resonance imaging and clinical signs indicated that demyelination was obviously decreased after UCMSCs therapy. Moreover, the present study showed that the mechanisms, involved in the effects of UCMSCs on MS, included their immunomodulatory functions to regulate cytokine secretion and affect functional differentiation of the T cell lineage.

18.
Vet Microbiol ; 230: 244-248, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30827396

ABSTRACT

Rhesus and several other species of monkeys are susceptible to genotypes of hepatitis E virus (HEV), and these species are thus commonly used as animal models for experimental HEV infection. However, information regarding HEV infection in monkeys in nature or at monkey farms is limited. To investigate the status of HEV infection in rhesus monkeys at farms, we collected 548 serum and 48 fecal samples from a rhesus monkey farm in China, and analyzed their levels of anti-HEV IgG antibodies and HEV RNAs. An enzyme-linked immunosorbent assay using genotype 3 HEV-like particles as antigen revealed anti-HEV IgG-positivity in 388 (70.8%) monkeys. The antibody-positive rates in the 1-year-old and 2-year-old monkeys were significantly lower than those in monkeys >3 years old. The antibody-positive rate was greatly increased from 7.4% in the 2-year-old monkeys to 100% in the 3-year-olds, suggesting that the latter received HEV infection at a high frequency. HEV RNA was detected in one of 88 sera from 1- and 2-year-old monkeys and 10 of 48 fecal specimens from 3-year-old monkeys by reverse transcription-polymerase chain reaction. Phylogenetic analyses revealed that the HEV strain RmKM15 was present in a serum sample that belonged to subtype 4b in genotype 4, whereas 10 strains detected in the fecal specimens belonged to subtype 4 h, suggesting that two genetically different strains were circulating at the farm. However, no significant clinical signs were observed in these monkeys. Further studies are required to identify the source of infection and to evaluate the pathogenicity of HEV in rhesus monkeys.


Subject(s)
Hepatitis E virus/pathogenicity , Hepatitis E/veterinary , Macaca mulatta/virology , Monkey Diseases/virology , Alanine Transaminase/blood , Animals , Antibodies, Viral/blood , China/epidemiology , Enzyme-Linked Immunosorbent Assay , Farms , Feces/virology , Genome, Viral , Genotype , Hepatitis E/diagnosis , Hepatitis E virus/genetics , Immunoglobulin G/blood , Monkey Diseases/diagnosis , Phylogeny , RNA, Viral/blood
19.
World J Gastroenterol ; 24(45): 5109-5119, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30568388

ABSTRACT

AIM: To establish a rotavirus (RV)-induced diarrhea model using RV SA11 in neonatal rhesus monkeys for the study of the pathogenic and immune mechanisms of RV infection and evaluation of candidate vaccines. METHODS: Neonatal rhesus monkeys with an average age of 15-20 d and an average weight of 500 g ± 150 g received intragastric administration of varying doses of SA11 RV ( 107 PFUs/mL, 106 PFUs/mL, or 105 PFUs/mL, 10 mL/animal) to determine whether the SA11 strain can effectively infect these animals by observing their clinical symptoms, fecal shedding of virus antigen by ELISA, distribution of RV antigen in the organs by immunofluorescence, variations of viral RNA load in the organs by qRT-PCR, histopathological changes in the small intestine by HE staining, and apoptosis of small intestinal epithelial cells by TUNEL assay. RESULTS: The RV monkey model showed typical clinical diarrhea symptoms in the 108 PFUs SA11 group, where we observed diarrhea 1-4 d post infection (dpi) and viral antigen shed in the feces from 1-7 dpi. RV was found in jejunal epithelial cells. We observed a viral load of approximately 5.85 × 103 copies per 100 mg in the jejunum at 2 dpi, which was increased to 1.09 × 105 copies per 100 mg at 3 dpi. A relatively high viral load was also seen in mesenteric lymph nodes at 2 dpi and 3 dpi. The following histopathological changes were observed in the small intestine following intragastric administration of SA11 RV: vacuolization, edema, and atrophy. Apoptosis in the jejunal villus epithelium was also detectable at 3 dpi. CONCLUSION: Our results indicate that we have successfully established a RV SA11 strain diarrhea model in neonatal rhesus monkeys. Future studies will elucidate the mechanisms underlying the pathogenesis of RV infection, and we will use the model to evaluate the protective effect of candidate vaccines.


Subject(s)
Diarrhea/immunology , Disease Models, Animal , Macaca mulatta , Rotavirus Infections/immunology , Rotavirus/pathogenicity , Animals , Animals, Newborn , Diarrhea/diagnosis , Diarrhea/virology , Epithelial Cells/immunology , Epithelial Cells/pathology , Epithelial Cells/virology , Feces/virology , Humans , Intestine, Small/cytology , Intestine, Small/immunology , Intestine, Small/pathology , Intestine, Small/virology , RNA, Viral/isolation & purification , Rotavirus/genetics , Rotavirus/immunology , Rotavirus Infections/diagnosis , Rotavirus Infections/virology , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL
...