Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 225
Filter
1.
Sci Rep ; 14(1): 22096, 2024 09 27.
Article in English | MEDLINE | ID: mdl-39333138

ABSTRACT

The prevalence of autism spectrum disorders (ASDs) differs substantially between males and females, suggesting that sex-related neurodevelopmental factors are central to ASD pathogenesis. Numerous studies have suggested that abnormal brain specialization patterns and poor regional cooperation contribute to ASD pathogenesis, but relatively little is known about the related sex differences. Therefore, this study examined sex differences in brain functional specialization and cooperation among children with ASD. The autonomy index (AI) and connectivity between functionally homotopic voxels (CFH) derived from resting-state functional magnetic resonance imaging (rs-fMRI) were compared between 58 male and 13 female children with ASD. In addition, correlations were examined between regional CFH values showing significant sex differences and symptom scores on the autism behavior checklist (ABC) and childhood autism rating scale (CARS). Male children with ASD demonstrated significantly greater CFH in the left fusiform gyrus (FG) and right opercular part of the inferior frontal gyrus (IFGoperc) than female children with ASD. In addition, the CFH value of the left FG in male children with ASD was negatively correlated with total ABC score and subscale scores for sensory and social abilities. In contrast, no sex differences were detected in brain specialization. These regional abnormalities in interhemispheric cooperation among male children with ASD may provide clues to the neural mechanisms underlying sex differences in ASD symptomatology and prevalence. Autism spectrum disorders, sex, resting-state functional magnetic resonance imaging, cerebral specialization, interhemispheric cooperation.


Subject(s)
Autism Spectrum Disorder , Brain , Magnetic Resonance Imaging , Humans , Male , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnostic imaging , Female , Child , Brain/diagnostic imaging , Brain/physiopathology , Sex Characteristics , Brain Mapping , Adolescent , Sex Factors
2.
Environ Sci Technol ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141319

ABSTRACT

Large quantities of uranium-containing radioactive wastewater are typically generated during nuclear fuel cycle processes. Despite significant efforts, efficient capture of migratable hexavalent uranium U(VI) is still a huge challenge due to its acidity, radioactivity, coexisting organics, and high impurity cation abundance in wastewater. Herein, we have fabricated all-polymer-based 0D/2D C4N/C6N7 homostructure hybrids with an S-scheme electronic configuration by coordinating the band engineering of semiconductors to enrich uranium species from the complex wastewater environment. The sample can capture over 97% of U(VI) in the actual concentration of nuclear industrial reprocessing wastewater; also, the U(VI) enrichment ratio still exceeds 95% when the irradiation dose (including α, ß, and γ) is up to 100 kGy. Density functional theory and X-ray absorption spectroscopy demonstrate that the aggregation of charge carriers on the surface of the sample regulates the electron-rich microenvironment, thus accelerating the reduction conversion of single electron reaction uranium disproportionation. It is expected that this work can provide more insight into other functional materials, thereby promoting uranium removal advancements in nuclear wastewater.

3.
Cancer Med ; 13(14): e70028, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39030997

ABSTRACT

BACKGROUND: Mouse double minute-2 homolog (MDM2) plays a key role in downregulating p53 activity in hematologic malignancies, and its overexpression is associated with poor outcomes. METHODS: This phase 1 study assessed the safety and efficacy of different dosing regimens of the MDM2 inhibitor milademetan as monotherapy and in combination with azacitidine (AZA) in patients with relapsed or refractory acute myeloid leukemia or high-risk myelodysplastic syndromes. RESULTS: Seventy-four patients (monotherapy, n = 57; milademetan-AZA combination, n = 17) were treated. The maximum tolerated dose of milademetan was 160 mg once daily given for the first 14-21 days of 28-day cycles as monotherapy and on Days 5-14 in combination with AZA. Dose-limiting toxicities were gastrointestinal, fatigue, or renal/electrolyte abnormalities. Treatment-emergent adverse events related to milademetan occurred in 82.5% and 64.7% of participants in the monotherapy and AZA combination arms, respectively. Two participants (4.2%) in the monotherapy arm achieved complete remission (CR), and 1 (2.1%) achieved CR with incomplete blood count recovery (CRi). Two participants (13.3%) achieved CRi in the combination arm. New TP53 mutations, detected only during milademetan monotherapy, were found pre-existing below standard detection frequency by droplet digital polymerase chain reaction. INTERPRETATION: Milademetan was relatively well tolerated in this population; however, despite signals of activity, clinical efficacy was minimal.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Azacitidine , Leukemia, Myeloid, Acute , Maximum Tolerated Dose , Myelodysplastic Syndromes , Proto-Oncogene Proteins c-mdm2 , Humans , Male , Azacitidine/administration & dosage , Azacitidine/adverse effects , Azacitidine/therapeutic use , Female , Aged , Middle Aged , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Leukemia, Myeloid, Acute/drug therapy , Aged, 80 and over , Myelodysplastic Syndromes/drug therapy , Adult , Treatment Outcome , Carbolines , Heterocyclic Compounds, 4 or More Rings
4.
Inorg Chem ; 63(29): 13653-13663, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38967129

ABSTRACT

The development and exploration of uranium decorporation agents with straightforward synthesis, high removal ability, and low toxicity are crucial guarantees for the safety of workers in the nuclear industry and the public. Herein, we report the use of traditional Chinese medicine licorice for uranium decorporation. Licorice has good adsorption performance and excellent selectivity for uranium in the simulated human environment. Glycyrrhizic acid (GL) has a high affinity for uranium (p(UO2) = 13.67) and will complex with uranium at the carbonyl site. Both licorice and GL exhibit lower cytotoxicity compared to the commercial clinical decorporation agent diethylenetriamine pentaacetate sodium salts (CaNa3-DTPA). Notably, at the cellular level, the uranium removal efficiency of GL is eight times higher than that of CaNa3-DTPA. Administration of GL by prophylactic intraperitoneal injection demonstrates that its uranium removal efficiency from kidneys and bones is 55.2 and 23.9%, while CaNa3-DTPA shows an insignificant effect. The density functional theory calculation of the bonding energy between GL and uranium demonstrates that GL exhibits a higher binding affinity (-2.01 vs -1.15 eV) to uranium compared to DTPA. These findings support the potential of licorice and its active ingredient, GL, as promising candidates for uranium decorporation agents.


Subject(s)
Biological Products , Glycyrrhiza , Glycyrrhizic Acid , Uranium , Glycyrrhiza/chemistry , Uranium/chemistry , Uranium/isolation & purification , Humans , Glycyrrhizic Acid/chemistry , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/isolation & purification , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/isolation & purification , Biological Products/chemical synthesis , Animals , Density Functional Theory , Mice , Cell Survival/drug effects
5.
Environ Pollut ; 357: 124442, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38944180

ABSTRACT

The extraction of 99TcO4- from radioactive effluents is extremely crucial for the purposes of nuclear disposal and environmental remediation. Herein, utilizing a facile and low-cost synthesis method, we report a pyridinium-based cationic polymer network, CPP-Cl, with impressive adsorption performance and ultrafast adsorption kinetics towards ReO4-. The structure featuring highly density of charged pyridinium units was synthesized, making it an effective adsorbent for capturing ReO4-. The material showed fast ReO4- adsorption kinetics reaching adsorption equilibrium within 30 s, an excellent capture capability of 1069.7 mg/g, and exceptional separation efficiency of 94.3% for removing 1000 ppm ReO4-. Furthermore, it possessed excellent reusability in multiple sorption/desorption trials and good uptake capacity within a widely ranging pH values. It is noteworthy that the extraction efficiency of CPP-Cl for ReO4- from simulated nuclear waste can be up to 94.2%. The favorable performance of the material in multiple tests revealed that CPP-Cl has tremendous potential as a high-efficiency sorbent for capturing 99TcO4-/ReO4- in complex nuclear associated environmental systems.


Subject(s)
Polymers , Adsorption , Polymers/chemistry , Porosity , Kinetics , Pyridinium Compounds/chemistry , Environmental Restoration and Remediation/methods
6.
Small ; : e2403311, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874118

ABSTRACT

Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur-vacancy (Sv) engineering is proposed to accelerate the formation of metal (oxy)hydroxide on the surface of Ni-Co bimetal sulfide nanosheet arrays on nickel foam (Sv-CoNiS@NF) for boosting the urea oxidation electrocatalysis. As a result, the obtained Sv-CoNiS@NF demonstrates an outstanding electrocatalytic UOR performance, which requires a low potential of only 1.397 V versus the reversible hydrogen electrode to achieve the current density of 100 mA cm-2. The ex situ Raman spectra and density functional theory calculations reveal the key roles of the Sv site and Co9S8 in promoting the electrocatalytic UOR performance. This work provides a new strategy for accelerating the transformation of electrocatalysts to active metallic (oxy)hydroxide for urea electrolysis via engineering the surface vacancies.

7.
J Hazard Mater ; 472: 134496, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38718508

ABSTRACT

Effective capture of radioactive iodine from nuclear fuel reprocessing is of great importance for public safety as well as the secure utility of nuclear energy. In this work, a hydrophobic nanosheet silicalite-1 (NSL-1) zeolite with an adjustable size was developed for efficient iodine (I2) and methyl iodide (CH3I) adsorption. The optimized all-silica zeolite NSL-1 exhibits an excellent I2 uptake capacity of 553 mg/g within 45 min and a CH3I uptake capacity of 262 mg/g within 1 h. Benefiting from the reduced thickness and enhanced porosity, microporous NSL-1 possesses enhanced iodine adsorption capacity and fast adsorption kinetics, which is a considerable high value among inorganic materials. Unexpectedly, the remarkable characters of high hydrophobicity, acid-resistance and anti-oxidation endow it a higher iodine uptake capacity than traditional aluminosilicate zeolites. More importantly, the high uptake selectivity toward I2 possessed by NSL-1 owing to its hydrophobic skeleton under simulated dynamic conditions. The low cost, facile and scalable synthesis of NSL-1 further highlights great prospects for applications in the nuclear industry. This work provides useful insights for designing efficient adsorbents for iodine capture.

8.
Inorg Chem ; 63(16): 7464-7472, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38598182

ABSTRACT

Uranium accumulation in the kidneys and bones following internal contamination results in severe damage, emphasizing the pressing need for the discovery of actinide decorporation agents with efficient removal of uranium and low toxicity. In this work, cinnamic acid (3-phenyl-2-propenoic acid, CD), a natural aromatic carboxylic acid, is investigated as a potential uranium decorporation ligand. CD demonstrates markedly lower cytotoxicity than that of diethylenetriaminepentaacetic acid (DTPA), an actinide decorporation agent approved by the FDA, and effectively removes approximately 44.5% of uranyl from NRK-52E cells. More importantly, the results of the prompt administration of the CD solution remove 48.2 and 27.3% of uranyl from the kidneys and femurs of mice, respectively. Assessments of serum renal function reveal the potential of CD to ameliorate uranyl-induced renal injury. Furthermore, the single crystal of CD and uranyl compound (C9H7O2)2·UO2 (denoted as UO2-CD) reveals the formation of uranyl dimers as secondary building units. Thermodynamic analysis of the solution shows that CD coordinates with uranyl to form a 2:1 molar ratio complex at a physiological pH of 7.4. Density functional theory (DFT) calculations further show that CD exhibits a significant 7-fold heightened affinity for uranyl binding in comparison to DTPA.


Subject(s)
Cinnamates , Uranium , Cinnamates/chemistry , Cinnamates/pharmacology , Animals , Ligands , Mice , Uranium/chemistry , Uranium/metabolism , Uranium/toxicity , Kidney/drug effects , Kidney/metabolism , Cell Line , Density Functional Theory , Rats , Molecular Structure , Cell Survival/drug effects , Chelating Agents/chemistry , Chelating Agents/pharmacology , Chelating Agents/chemical synthesis
9.
J Hazard Mater ; 470: 134237, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38593662

ABSTRACT

Ti-based MOFs exhibit ultra-high stability in radioactive waste gases containing nitrogen oxides (NOX) and are effective in capturing radioactive iodine. In this study, NH2-MIL-125 was synthesized via a one-pot solvothermal method and its adsorption performance for iodine was investigated using batch adsorption experiments, the stability of materials was tested by simulating post-processing conditions. The results indicated that NH2-MIL-125 had a maximum iodine adsorption capacity of 1.61 g/g at 75 â„ƒ and reached adsorption equilibrium within 60 min, and the adsorption capacity of methyl iodine reached 776.9 mg/g. The material also exhibited excellent stability and iodine adsorption performance in the presence of NOX. After soaking in NO2 for 24 h, its structure remained stable and the adsorption capacity for iodine remained at 231.5 mg/g. The excellent co-adsorption performance of NH2-MIL-125 on iodine and NOX was attributed to the synergistic effects of Ti-OH groups and amino functional groups. These findings provide a reference for the capture of radioactive iodine and also demonstrate the potential of NH2-MIL-125 for iodine capture during spent fuel reprocessing.

10.
J Chem Theory Comput ; 20(5): 1811-1820, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38320113

ABSTRACT

Polar molecules are a promising platform for achieving scalable quantum information processing because of their long-range electric dipole-dipole interactions. Here, we take the coupled ultracold CaF molecules in an external electric field with gradient as qubits and concentrate on the creation of intermolecular entanglement with the method of deep reinforcement learning (RL). After sufficient training episodes, the educated RL agents can discover optimal time-dependent control fields that steer the molecular systems from separate states to two-qubit and three-qubit entangled states with high fidelities. We analyze the fidelities and the negativities (characterizing entanglement) of the generated states as a function of training episodes. Moreover, we present the population dynamics of the molecular systems under the influence of control fields discovered by the agents. Compared with the schemes for creating molecular entangled states based on optimal control theory, some conditions (e.g., molecular spacing and electric field gradient) adopted in this work are more feasible in the experiment. Our results demonstrate the potential of machine learning to effectively solve quantum control problems in polar molecular systems.

11.
Pediatr Res ; 95(5): 1372-1378, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38200323

ABSTRACT

BACKGROUND: Large-for-gestational age (LGA), a marker of fetal overgrowth, has been linked to obesity in adulthood. Little is known about how infancy growth trajectories affect adiposity in early childhood in LGA. METHODS: In the Shanghai Birth Cohort, we followed up 259 LGA (birth weight >90th percentile) and 1673 appropriate-for-gestational age (AGA, 10th-90th percentiles) children on body composition (by InBody 770) at age 4 years. Adiposity outcomes include body fat mass (BFM), percent body fat (PBF), body mass index (BMI), overweight/obesity, and high adiposity (PBF >85th percentile). RESULTS: Three weight growth trajectories (low, mid, and high) during infancy (0-2 years) were identified in AGA and LGA subjects separately. BFM, PBF and BMI were progressively higher from low- to mid-to high-growth trajectories in both AGA and LGA children. Compared to the mid-growth trajectory, the high-growth trajectory was associated with greater increases in BFM and the odds of overweight/obesity or high adiposity in LGA than in AGA children (tests for interactions, all P < 0.05). CONCLUSIONS: Weight trajectories during infancy affect adiposity in early childhood regardless of LGA or not. The study is the first to demonstrate that high-growth weight trajectory during infancy has a greater impact on adiposity in early childhood in LGA than in AGA subjects. IMPACT: Large-for-gestational age (LGA), a marker of fetal overgrowth, has been linked to obesity in adulthood, but little is known about how weight trajectories during infancy affect adiposity during early childhood in LGA subjects. The study is the first to demonstrate a greater impact of high-growth weight trajectory during infancy (0-2 years) on adiposity in early childhood (at age 4 years) in subjects with fetal overgrowth (LGA) than in those with normal birth size (appropriate-for-gestational age). Weight trajectory monitoring may be a valuable tool in identifying high-risk LGA children for close follow-ups and interventions to decrease the risk of obesity.

12.
Int J Gynaecol Obstet ; 164(3): 942-950, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37621196

ABSTRACT

OBJECTIVE: To investigate the efficacy of transvaginal cerclage in twin pregnancies with cervical shortening, and to narrow the threshold cervical length for transvaginal cerclage. METHODS: This is a prospective cohort study and 177 twin pregnancies with asymptomatic cervical dilatation or cervical length of 15 mm or less between 16+0 and 25+6 weeks of pregnancy were included. Patients independently chose either transvaginal cerclage (n = 129) or no cerclage treatment (n = 48) after being consulted on the risk and potential benefit of transvaginal cerclage. The primary outcome measures were gestational age at delivery and neonatal survival rate. RESULTS: Compared with the no cerclage group, the cerclage group exhibited a higher gestational age at delivery (32.1 ± 4.5 vs 28.3 ± 6.2 weeks, P < 0.001) and a higher neonatal survival rate (86.4% vs 47.9%, P < 0.001). Subgroup analysis showed that in twin pregnancies with cervical dilatation or cervical length less than 10 mm, the cerclage group had significantly higher gestational age at delivery (31.3 ± 4.6 vs 23.4 ± 4.3 weeks, P < 0.001) and a higher neonatal survival rate (123 [85.4%] vs 4 [9.1%], P < 0.001) than the no cerclage group, but in twins when cervical length was 10-15 mm, the two measures were similar between the two groups. CONCLUSION: Transvaginal cerclage may provide benefits for twins when cervical dilatation or cervical length is less than 10 mm, but its efficacy might not extend to twins when the cervical length is 10-15 mm. Further evidence is needed to confirm the efficacy of transvaginal cerclage for twin pregnancies with a short cervix.


Subject(s)
Cerclage, Cervical , Premature Birth , Female , Humans , Infant, Newborn , Pregnancy , Cervix Uteri/surgery , Labor Stage, First , Pregnancy, Twin , Premature Birth/prevention & control , Prospective Studies
13.
Int J Gynaecol Obstet ; 165(1): 343-349, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37899709

ABSTRACT

OBJECTIVE: This study aimed to describe the pregnancy outcomes of a case series of patients with probable cerclage failure who received repeat cerclage (RC) with potential indications. METHODS: We retrospectively collected a case series of 55 singleton pregnancies with RC from 2019 to 2022 in Shanghai, China. All included women provided written informed consent, and the study was approved by the ethics committees of the two hospitals. We compared pregnancy outcomes between pregnancies with RC for different indications. RESULTS: Among the case series, nine patients underwent RC for the indication of protruding membranes below the previous suture loop (group A), and the other 46 patients for painless cervix dilation (group B). Gestational age at delivery was shorter in group B than in group A (30.7 vs 37.6 weeks, P = 0.009). Rates of preterm birth <32 weeks (63.0% vs 22.2%, P = 0.033) and < 37 weeks (76.1% vs 33.3%, P = 0.002) were significantly higher in group B than in group A. Of the 46 patients who underwent RC for painless cervical dilation, 28 had cervical dilation of 1 to 2 cm (group C) and the other 18 had cervical dilation of 3 to 6 cm (group D). The gestational age at delivery was shorter in group D than in group C (27.4 vs 31.5 weeks, P = 0.037). However, rates of preterm birth <32 or <37 weeks were similar between the groups. CONCLUSION: RC may constitute a rescue strategy for patients with probable cerclage failure. Protrusion of membranes below the cerclage loop or cervical dilation <3 cm may be an indicator of better pregnancy outcome.


Subject(s)
Cerclage, Cervical , Premature Birth , Infant, Newborn , Pregnancy , Humans , Female , Infant , Retrospective Studies , Premature Birth/epidemiology , Premature Birth/prevention & control , China , Pregnancy Outcome
14.
Chemosphere ; 350: 141066, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159731

ABSTRACT

Radionuclide uranium is a great threat to human health, due to its high chemical toxicity and radioactivity. Finding suitable uranium decorporation to reduce damage caused by uranium internal contamination is an important aspect of nuclear emergency response. However, the poor selectivity and/or high toxicity of the only excretory promoter approved by Food and Drug Administration (FDA) is an obvious disadvantage. Herein, we choose an edible natural product, the traditional Chinese medicine called Perilla frutescens (PF), which has wide sources and can be used as an excellent and effective uranyl decorporation. In vivo uranium decorporation assays illustrate the removal efficiency of uranium in kidney were 68.87% and 43.26%, in femur were 56.66% and 54.53%, by the test of prophylactic and immediate administration, respectively. Cell level experiments confirmed that it had better biocompatibility than CaNa3-DTPA (CaNa3-diethylenetriamine pentaacetate, a commercial actinide excretion agent). In vitro static adsorption experiments exhibited that its excellent selectivity sorption for uranyl. All those results findings would provide new research insights about natural product for uranyl decorporation.


Subject(s)
Biological Products , Perilla frutescens , Uranium , Humans , Uranium/toxicity , Chelating Agents/pharmacology , Kidney , Biological Products/pharmacology
15.
Small ; : e2308451, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38059738

ABSTRACT

Developing pure inorganic materials capable of efficiently co-removing radioactive I2 and CH3 I has always been a major challenge. Bismuth-based materials (BBMs) have garnered considerable attention due to their impressive I2 sorption capacity at high-temperature and cost-effectiveness. However, solely relying on bismuth components falls short in effectively removing CH3 I and has not been systematically studied. Herein, a series of hollow mesoporous core-shell bifunctional materials with adjustable shell thickness and Si/Al ratio by using silica-coated Bi2 O3 as a hard template and through simple alkaline-etching and CTAB-assisted surface coassembly methods (Bi@Al/SiO2 ) is successfully synthesized. By meticulously controlling the thickness of the shell layer and precisely tuning of the Si/Al ratio composition, the synthesis of BBMs capable of co-removing radioactive I2 and CH3 I for the first time, demonstrating remarkable sorption capacities of 533.1 and 421.5 mg g-1 , respectively is achieved. Both experimental and theoretical calculations indicate that the incorporation of acid sites within the shell layer is a key factor in achieving effective CH3 I sorption. This innovative structural design of sorbent enables exceptional co-removal capabilities for both I2 and CH3 I. Furthermore, the core-shell structure enhances the retention of captured iodine within the sorbents, which may further prevent potential leakage.

16.
Plant Phenomics ; 5: 0095, 2023.
Article in English | MEDLINE | ID: mdl-37953854

ABSTRACT

In intercropping systems, higher crops block direct radiation, resulting in inevitable shading on the lower crops. Cumulative shading capacity (CSC), defined as the amount of direct radiation shaded by higher crops during a growth period, affects the light interception and radiation use efficiency of crops. Previous studies investigated the light interception and distribution of intercropping. However, how to directly quantify the CSC and its inter-row heterogeneity is still unclear. Considering the canopy height differences (Hms, obtained using an unmanned aerial vehicle) and solar position, we developed a shading capacity model (SCM) to quantify the shading on soybean in maize-soybean intercropping systems. Our results indicated that the southernmost row of soybean had the highest shading proportion, with variations observed among treatments composed of strip configurations and plant densities (ranging from 52.44% to 57.44%). The maximum overall CSC in our treatments reached 123.77 MJ m-2. There was a quantitative relationship between CSC and the soybean canopy height increment (y = 3.61 × 10-2×ln(x)+6.80 × 10-1, P < 0.001). Assuming that the growth status of maize and soybean was consistent under different planting directions and latitudes, we evaluated the effects of factors (i.e., canopy height difference, latitude, and planting direction) on shading to provide insights for optimizing intercropping planting patterns. The simulation showed that increasing canopy height differences and latitude led to increased shading, and the planting direction with the least shading was about 90° to 120° at the experimental site. The newly proposed SCM offers a quantitative approach for better understanding shading in intercropping systems.

17.
J Anim Sci Biotechnol ; 14(1): 147, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978561

ABSTRACT

BACKGROUND: Salpingitis is one of the common diseases in laying hen production, which greatly decreases the economic outcome of laying hen farming. Lactiplantibacillus plantarum was effective in preventing local or systemic inflammation, however rare studies were reported on its prevention against salpingitis. This study aimed to investigate the preventive molecular regulatory network of microencapsulated Lactiplantibacillus plantarum (MLP) against salpingitis through multi-omics analysis, including microbiome, transcriptome and metabolome analyses. RESULTS: The results revealed that supplementation of MLP in diet significantly alleviated the inflammation and atrophy of uterus caused by lipopolysaccharide (LPS) in hens (P < 0.05). The concentrations of plasma IL-2 and IL-10 in hens of MLP-LPS group were higher than those in hens of LPS-stimulation group (CN-LPS group) (P < 0.05). The expression levels of TLR2, MYD88, NF-κB, COX2, and TNF-α were significantly decreased in the hens fed diet supplemented with MLP and suffered with LPS stimulation (MLP-LPS group) compared with those in the hens of CN-LPS group (P < 0.05). Differentially expressed genes (DEGs) induced by MLP were involved in inflammation, reproduction, and calcium ion transport. At the genus level, the MLP supplementation significantly increased the abundance of Phascolarctobacterium, whereas decreased the abundance of Candidatus_Saccharimonas in LPS challenged hens (P < 0.05). The metabolites altered by dietary supplementation with MLP were mainly involved in galactose, uronic acid, histidine, pyruvate and primary bile acid metabolism. Dietary supplementation with MLP inversely regulates LPS-induced differential metabolites such as LysoPA (24:0/0:0) (P < 0.05). CONCLUSIONS: In summary, dietary supplementation with microencapsulated Lactiplantibacillus plantarum prevented salpingitis by modulating the abundances of Candidatus_Saccharimonas, Phascolarctobacterium, Ruminococcus_torques_group and Eubacterium_hallii_group while downregulating the levels of plasma metabolites, p-tolyl sulfate, o-cresol and N-acetylhistamine and upregulating S-lactoylglutathione, simultaneously increasing the expressions of CPNE4, CNTN3 and ACAN genes in the uterus, and ultimately inhibiting oviducal inflammation.

18.
Placenta ; 143: 45-53, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37804693

ABSTRACT

INTRODUCTION: Gestational Diabetes Mellitus (GDM) is characterized by a high risk of fetal macrosomia and placenta hypervascularization. Exosomes has been known participating in various physiological and pathological processes, including pro-angiogenic function. However, the effects of umbilical cord blood derived exosomes from cases of GDM (GDM-exo) on placental vascular network formation remain unclear. METHODS: In the current study, we isolated and identified exosomes in umbilical cord blood from both normal (N-exo) and GDM pregnancies. Meanwhile, we investigated the effects of umbilical cord blood derived exosomes on placental angiogenesis both in vitro and in vivo. RESULTS: Our data indicated that in a mouse model, the placenta and fetus weight were significantly higher in the ones administrated with GDM-exo when compared with N-exo. Meanwhile, GDM-exo significantly enhanced placental endothelial cells functions in both HUVEC and HPMEC endothelial cell models. Importantly, we explored two up-regulated proteins in GDM-exo, namely leucine-rich alpha-2-glycoprotein-1 (LRG1) and extracellular matrix protein 1 (ECM1) by proteome analysis, which performed largely pro-angiogenic function and probably resulted in hypervascularization in GDM placenta. DISCUSSION: Thus, we proposed that abundant LRG1 and ECM1 enriched GDM-exo may take important roles in regulating pathological placental angiogenesis.


Subject(s)
Diabetes, Gestational , Extracellular Matrix Proteins , Glycoproteins , Animals , Female , Mice , Pregnancy , Diabetes, Gestational/genetics , Diabetes, Gestational/metabolism , Endothelial Cells/metabolism , Exosomes/metabolism , Extracellular Matrix Proteins/metabolism , Glycoproteins/metabolism , Leucine/metabolism , Leucine/pharmacology , Neovascularization, Pathologic/metabolism , Placenta/metabolism
19.
Front Med (Lausanne) ; 10: 1234050, 2023.
Article in English | MEDLINE | ID: mdl-37780568

ABSTRACT

Numerous studies have shown that miRNAs play a crucial role in the investigation of complex human diseases. Identifying the connection between miRNAs and diseases is crucial for advancing the treatment of complex diseases. However, traditional methods are frequently constrained by the small sample size and high cost, so computational simulations are urgently required to rapidly and accurately forecast the potential correlation between miRNA and disease. In this paper, the DEJKMDR, a graph convolutional network (GCN)-based miRNA-disease association prediction model is proposed. The novelty of this model lies in the fact that DEJKMDR integrates biomolecular information on miRNA and illness, including functional miRNA similarity, disease semantic similarity, and miRNA and disease similarity, according to their Gaussian interaction attribute. In order to minimize overfitting, some edges are randomly destroyed during the training phase after DropEdge has been used to regularize the edges. JK-Net, meanwhile, is employed to combine various domain scopes through the adaptive learning of nodes in various placements. The experimental results demonstrate that this strategy has superior accuracy and dependability than previous algorithms in terms of predicting an unknown miRNA-disease relationship. In a 10-fold cross-validation, the average AUC of DEJKMDR is determined to be 0.9772.

20.
Chemistry ; 29(72): e202302445, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37803818

ABSTRACT

Efficient adsorption of palladium ions from acid nuclear waste solution is crucial for ensuring the safety of vitrification process for radioactive waste. However, the limited stability and selectivity of most current adsorbents hinder their practical applications under strong acid and intense radiation conditions. Herein, to address these limitations, we designed and synthesized an aryl-ether-linked covalent organic framework (COF-316-DM) grafted dimethylthiocarbamoyl groups on the pore walls. This unique structure endows COF-316-DM with high stability and exceptional palladium capture capacity. The robust polyarylether linkage enables COF-316-DM to withstand irradiation doses of 200 or 400 kGy of ß/γ ray. Furthermore, COF-316-DM demonstrates fast adsorption kinetics, high adsorption capacity (147 mg g-1 ), and excellent reusability in 4 M nitric acid. Moreover, COF-316-DM exhibits remarkable selectivity for palladium ions in the presence of 17 interference ions, simulating high level liquid waste scenario. The superior adsorption performance can be attributed to the strong binding affinity between the thioamide groups and Pd2+ ions, as confirmed by the comprehensive analysis of FT-IR and XPS spectra. Our findings highlight the potential of COFs with robust linkers and tailored functional groups for efficient and selective capture of metal ions, even in harsh environmental conditions.

SELECTION OF CITATIONS
SEARCH DETAIL