Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2401654, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650111

ABSTRACT

T-bet, encoded by TBX21, is extensively expressed across various immune cell types, and orchestrates critical functions in their development, survival, and physiological activities. However, the role of T-bet in non-immune compartments, notably the epithelial cells, remains obscure. Herein, a Tet-O-T-bet transgenic mouse strain is generated for doxycycline-inducible T-bet expression in adult animals. Unexpectedly, ubiquitous T-bet overexpression causes acute diarrhea, intestinal damage, and rapid mortality. Cell-type-specific analyses reveal that T-bet-driven pathology is not attributable to its overexpression in CD4+ T cells or myeloid lineages. Instead, inducible T-bet overexpression in the intestinal epithelial cells is the critical determinant of the observed lethal phenotype. Mechanistically, T-bet overexpression modulates ion channel and transporter profiles in gut epithelial cells, triggering profound fluid secretion and subsequent lethal dehydration. Furthermore, ectopic T-bet expression enhances gut epithelial cell apoptosis and markedly suppresses colon cancer development in xenograft models. Collectively, the findings unveil a previously unrecognized role of T-bet in intestinal epithelial cells for inducing apoptosis, diarrhea, and local inflammation, thus implicating its potential as a therapeutic target for the treatment of cancer and inflammatory diseases.

2.
Nat Cell Biol ; 26(4): 628-644, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38514841

ABSTRACT

Excessive inflammation is the primary cause of mortality in patients with severe COVID-19, yet the underlying mechanisms remain poorly understood. Our study reveals that ACE2-dependent and -independent entries of SARS-CoV-2 in epithelial cells versus myeloid cells dictate viral replication and inflammatory responses. Mechanistically, SARS-CoV-2 NSP14 potently enhances NF-κB signalling by promoting IKK phosphorylation, while SARS-CoV-2 ORF6 exerts an opposing effect. In epithelial cells, ACE2-dependent SARS-CoV-2 entry enables viral replication, with translated ORF6 suppressing NF-κB signalling. In contrast, in myeloid cells, ACE2-independent entry blocks the translation of ORF6 and other viral structural proteins due to inefficient subgenomic RNA transcription, but NSP14 could be directly translated from genomic RNA, resulting in an abortive replication but hyperactivation of the NF-κB signalling pathway for proinflammatory cytokine production. Importantly, we identified TLR1 as a critical factor responsible for viral entry and subsequent inflammatory response through interaction with E and M proteins, which could be blocked by the small-molecule inhibitor Cu-CPT22. Collectively, our findings provide molecular insights into the mechanisms by which strong viral replication but scarce inflammatory response during the early (ACE2-dependent) infection stage, followed by low viral replication and potent inflammatory response in the late (ACE2-independent) infection stage, may contribute to COVID-19 progression.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , COVID-19/metabolism , COVID-19/virology , NF-kappa B/metabolism , SARS-CoV-2/physiology , Virus Replication , Host-Parasite Interactions
4.
EMBO Rep ; 24(12): e57828, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37971847

ABSTRACT

Microbial products, such as lipopolysaccharide (LPS), can elicit efficient innate immune responses against invading pathogens. However, priming with LPS can induce a form of innate immune memory, termed innate immune "tolerance", which blunts subsequent NF-κB signaling. Although epigenetic and transcriptional reprogramming has been shown to play a role in innate immune memory, the involvement of post-translational regulation remains unclear. Here, we report that ubiquitin-specific protease 3 (USP3) participates in establishing "tolerance" innate immune memory through non-transcriptional feedback. Upon NF-κB signaling activation, USP3 is stabilized and exits the nucleus. The cytoplasmic USP3 specifically removes the K63-linked polyubiquitin chains on MyD88, thus negatively regulating TLR/IL1ß-induced inflammatory signaling activation. Importantly, cytoplasmic translocation is a prerequisite step for USP3 to deubiquitinate MyD88. Additionally, LPS priming could induce cytoplasmic retention and faster and stronger cytoplasmic translocation of USP3, enabling it to quickly shut down NF-κB signaling upon the second LPS challenge. This work identifies a previously unrecognized post-translational feedback loop in the MyD88-USP3 axis, which is critical for inducing normal "tolerance" innate immune memory.


Subject(s)
Myeloid Differentiation Factor 88 , NF-kappa B , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/genetics , Lipopolysaccharides/pharmacology , Signal Transduction , Immunity, Innate , Immune Tolerance
5.
Front Immunol ; 13: 963819, 2022.
Article in English | MEDLINE | ID: mdl-35967333

ABSTRACT

Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the world. Besides genetic causes, colonic inflammation is one of the major risk factors for CRC development, which is synergistically regulated by multiple components, including innate and adaptive immune cells, cytokine signaling, and microbiota. The complex interaction between CRC and the gut microbiome has emerged as an important area of current CRC research. Metagenomic profiling has identified a number of prominent CRC-associated bacteria that are enriched in CRC patients, linking the microbiota composition to colitis and cancer development. Some microbiota species have been reported to promote colitis and CRC development in preclinical models, while a few others are identified as immune modulators to induce potent protective immunity against colitis and CRC. Mechanistically, microbiota regulates the activation of different immune cell populations, inflammation, and CRC via crosstalk between innate and adaptive immune signaling pathways, including nuclear factor kappa B (NF-κB), type I interferon, and inflammasome. In this review, we provide an overview of the potential interactions between gut microbiota and host immunity and how their crosstalk could synergistically regulate inflammation and CRC, thus highlighting the potential roles and mechanisms of gut microbiota in the development of microbiota-based therapies to prevent or alleviate colitis and CRC.


Subject(s)
Colitis , Colorectal Neoplasms , Gastrointestinal Microbiome , Microbiota , Colitis/metabolism , Colorectal Neoplasms/metabolism , Humans , Inflammation/complications
6.
Adv Sci (Weinh) ; 9(22): e2103701, 2022 08.
Article in English | MEDLINE | ID: mdl-35635376

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) play critical roles in the innate immunity against infectious diseases and are required to link pathogen DNA sensing to immune responses. However, the mechanisms by which cGAS-STING-induced cytokines suppress the adaptive immune response against malaria infections remain poorly understood. Here, cGAS-STING signaling is identified to play a detrimental role in regulating anti-malaria immunity. cGAS or STING deficiency in mice markedly prolongs mouse survival during lethal malaria Plasmodium yoelii nigeriensis N67C infections by reducing late interleukin (IL)-6 production. Mechanistically, cGAS/STING recruits myeloid differentiation factor 88 (MyD88) and specifically induces the p38-dependent signaling pathway for late IL-6 production, which, in turn, expands CD11b+ Ly6Chi proinflammatory monocytes to inhibit immunity. Moreover, the blockage or ablation of the cGAS-STING-MyD88-p38-IL-6 signaling axis or the depletion of CD11b+ Ly6Chi proinflammatory monocytes provides mice a significant survival benefit during N67C and other lethal malaria-strain infections. Taken together, these findings identify a previously unrecognized detrimental role of cGAS-STING-MyD88-p38 axis in infectious diseases through triggering the late IL-6 production and proinflammatory monocyte expansion and provide insight into how targeting the DNA sensing pathway, dysregulated cytokines, and proinflammatory monocytes enhances immunity against infection.


Subject(s)
Malaria , Monocytes , Animals , DNA , Interleukin-6/metabolism , Malaria/immunology , Malaria/mortality , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Monocytes/immunology , Myeloid Differentiation Factor 88/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism
7.
Front Immunol ; 13: 812774, 2022.
Article in English | MEDLINE | ID: mdl-35309296

ABSTRACT

Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.


Subject(s)
Signal Transduction , Toll-Like Receptors , Adaptive Immunity , Immunity, Cellular , Immunity, Innate/physiology
8.
J Immunother Cancer ; 10(3)2022 03.
Article in English | MEDLINE | ID: mdl-35338087

ABSTRACT

BACKGROUND: The current therapeutic antibodies and chimeric antigen receptor (CAR) T cells are capable of recognizing surface antigens, but not of intracellular proteins, thus limiting the target coverage for drug development. To mimic the feature of T-cell receptor (TCR) that recognizes the complex of major histocompatibility class I and peptide on the cell surface derived from the processed intracellular antigen, we used NY-ESO-1, a cancer-testis antigen, to develop a TCR-like fully human IgG1 antibody and its derivative, CAR-T cells, for cancer immunotherapy. METHODS: Human single-chain variable antibody fragment (scFv) phage library (~10∧11) was screened against HLA-A2/NY-ESO-1 (peptide 157-165) complex to obtain target-specific antibodies. The specificity and affinity of those antibodies were characterized by flow cytometry, ELISA, biolayer interferometry, and confocal imaging. The biological functions of CAR-T cells were evaluated against target tumor cells in vitro. In vivo antitumor activity was investigated in a triple-negative breast cancer (TNBC) model and primary melanoma tumor model in immunocompromised mice. RESULTS: Monoclonal antibody 2D2 identified from phage-displayed library specifically bound to NY-ESO-1157-165 in the context of human leukocyte antigen HLA-A*02:01 but not to non-A2 or NY-ESO-1 negative cells. The second-generation CAR-T cells engineered from 2D2 specifically recognized and eliminated A2+/NY-ESO-1+tumor cells in vitro, inhibited tumor growth, and prolonged the overall survival of mice in TNBC and primary melanoma tumor model in vivo. CONCLUSIONS: This study showed the specificity of the antibody identified from human scFv phage library and demonstrated the potential antitumor activity by TCR-like CAR-T cells both in vitro and in vivo, warranting further preclinical and clinical evaluation of the TCR-like antibody in patients. The generation of TCR-like antibody and its CAR-T cells provides the state-of-the-art platform and proof-of-concept validation to broaden the scope of target antigen recognition and sheds light on the development of novel therapeutics for cancer immunotherapy.


Subject(s)
Melanoma , Receptors, Chimeric Antigen , Triple Negative Breast Neoplasms , Animals , Antibodies , Antigens, Neoplasm , Cell Line, Tumor , HLA-A2 Antigen , Humans , Immunotherapy , Male , Melanoma/therapy , Mice , Peptides , Receptors, Antigen, T-Cell
9.
Nat Metab ; 3(11): 1466-1475, 2021 11.
Article in English | MEDLINE | ID: mdl-34580494

ABSTRACT

Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), COVID-19 is a virus-induced inflammatory disease of the airways and lungs that leads to severe multi-organ damage and death. Here we show that cellular lipid synthesis is required for SARS-CoV-2 replication and offers an opportunity for pharmacological intervention. Screening a short-hairpin RNA sublibrary that targets metabolic genes, we identified genes that either inhibit or promote SARS-CoV-2 viral infection, including two key candidate genes, ACACA and FASN, which operate in the same lipid synthesis pathway. We further screened and identified several potent inhibitors of fatty acid synthase (encoded by FASN), including the US Food and Drug Administration-approved anti-obesity drug orlistat, and found that it inhibits in vitro replication of SARS-CoV-2 variants, including more contagious new variants, such as Delta. In a mouse model of SARS-CoV-2 infection (K18-hACE2 transgenic mice), injections of orlistat resulted in lower SARS-CoV-2 viral levels in the lung, reduced lung pathology and increased mouse survival. Our findings identify fatty acid synthase inhibitors as drug candidates for the prevention and treatment of COVID-19 by inhibiting SARS-CoV-2 replication. Clinical trials are needed to evaluate the efficacy of repurposing fatty acid synthase inhibitors for severe COVID-19 in humans.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/metabolism , COVID-19/virology , Fatty Acids/biosynthesis , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects , Animals , Antiviral Agents/therapeutic use , COVID-19/mortality , Cell Line , Disease Models, Animal , Disease Susceptibility , Dose-Response Relationship, Drug , Drug Development , Gene Knockdown Techniques , Host-Pathogen Interactions/genetics , Humans , Lipid Metabolism/drug effects , Mice , fas Receptor/antagonists & inhibitors , fas Receptor/deficiency , fas Receptor/metabolism , COVID-19 Drug Treatment
10.
Cell Host Microbe ; 29(6): 959-974.e7, 2021 06 09.
Article in English | MEDLINE | ID: mdl-33894128

ABSTRACT

Microbiota play critical roles in regulating colitis and colorectal cancer (CRC). However, it is unclear how the microbiota generate protective immunity against these disease states. Here, we find that loss of the innate and adaptive immune signaling molecule, TAK1, in myeloid cells (Tak1ΔM/ΔM) yields complete resistance to chemical-induced colitis and CRC through microbiome alterations that drive protective immunity. Tak1ΔM/ΔM mice exhibit altered microbiota that are critical for resistance, with antibiotic-mediated disruption ablating protection and Tak1ΔM/ΔM microbiota transfer conferring protection against colitis or CRC. The altered microbiota of Tak1ΔM/ΔM mice promote IL-1ß and IL-6 signaling pathways, which are required for induction of protective intestinal Th17 cells and resistance. Specifically, Odoribacter splanchnicus is abundant in Tak1ΔM/ΔM mice and sufficient to induce intestinal Th17 cell development and confer resistance against colitis and CRC in wild-type mice. These findings identify specific microbiota strains and immune mechanisms that protect against colitis and CRC.


Subject(s)
Bacteroidetes/metabolism , Colitis/microbiology , Colorectal Neoplasms/microbiology , Cytokines/physiology , Gastrointestinal Microbiome , MAP Kinase Kinase Kinases/physiology , Th17 Cells/metabolism , Animals , Colitis/chemically induced , Colitis/metabolism , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/metabolism , Disease Models, Animal , Feces/microbiology , Female , Host Microbial Interactions , Immunity, Innate , Interleukin-1beta/physiology , Interleukin-6/physiology , MAP Kinase Kinase Kinases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/metabolism , Signal Transduction , Th17 Cells/immunology
11.
EMBO J ; 37(3): 351-366, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29288164

ABSTRACT

The RIG-I-like receptors (RLRs) are critical for protection against RNA virus infection, and their activities must be stringently controlled to maintain immune homeostasis. Here, we report that leucine-rich repeat containing protein 25 (LRRC25) is a key negative regulator of RLR-mediated type I interferon (IFN) signaling. Upon RNA virus infection, LRRC25 specifically binds to ISG15-associated RIG-I to promote interaction between RIG-I and the autophagic cargo receptor p62 and to mediate RIG-I degradation via selective autophagy. Depletion of either LRRC25 or ISG15 abrogates RIG-I-p62 interaction as well as the autophagic degradation of RIG-I. Collectively, our findings identify a previously unrecognized role of LRRC25 in type I IFN signaling activation by which LRRC25 acts as a secondary receptor to assist RIG-I delivery to autophagosomes for degradation in a p62-dependent manner.


Subject(s)
Autophagy/immunology , DEAD Box Protein 58/metabolism , Interferon Type I/immunology , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Cytokines/metabolism , HEK293 Cells , Humans , Membrane Proteins/genetics , Protein Binding/immunology , RNA Interference , RNA, Small Interfering/genetics , Receptors, Immunologic , Signal Transduction/immunology , Ubiquitins/metabolism , Vesicular stomatitis Indiana virus/immunology
12.
Sci Rep ; 7(1): 13448, 2017 10 18.
Article in English | MEDLINE | ID: mdl-29044191

ABSTRACT

Nuclear factor κB (NF-κB) is a family of critical transcription factors that play a critical role in innate immune responses and inflammation, yet the molecular mechanisms responsible for its tight regulation is not fully understood. In this study, we identified LRRC25, a member of leucine-rich repeat (LRR)-containing protein family, as a negative regulator in the NF-κB signaling pathway. Ectopic expression of LRRC25 impaired NF-κB activation, whereas knockout of LRRC25 potentiated NF-κB activation and enhanced the production of inflammatory cytokines. Further study demonstrated that the LRR domain of LRRC25 interacted with the Rel Homology domain (RHD) of p65/RelA and promotes the degradation of p65/RelA. Furthermore, LRRC25 enhanced the interaction between p65/RelA and cargo receptor p62, thus facilitating the degradation of p65/RelA through autophagy pathway. Our study has not only identified LRRC25 as a novel inhibitor of NF-κB signaling pathway, but also uncovers a new mechanism of crosstalk between NF-κB signaling and autophagy pathways.


Subject(s)
Autophagy , Membrane Proteins/metabolism , NF-kappa B/metabolism , Signal Transduction , Transcription Factor RelA/metabolism , Cell Line , Gene Knockout Techniques , Humans , Inflammation/metabolism , Membrane Proteins/genetics , Protein Binding , Proteolysis
13.
Mol Cell ; 68(2): 308-322.e4, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28965816

ABSTRACT

Tetherin (BST2/CD317) is an interferon-inducible antiviral factor known for its ability to block the release of enveloped viruses from infected cells. Yet its role in type I interferon (IFN) signaling remains poorly defined. Here, we demonstrate that Tetherin is a negative regulator of RIG-I like receptor (RLR)-mediated type I IFN signaling by targeting MAVS. The induction of Tetherin by type I IFN accelerates MAVS degradation via ubiquitin-dependent selective autophagy in human cells. Moreover, Tetherin recruits E3 ubiquitin ligase MARCH8 to catalyze K27-linked ubiquitin chains on MAVS at lysine 7, which serves as a recognition signal for NDP52-dependent autophagic degradation. Taken together, our findings reveal a negative feedback loop of RLR signaling generated by Tetherin-MARCH8-MAVS-NDP52 axis and provide insights into a better understanding of the crosstalk between selective autophagy and optimal deactivation of type I IFN signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Antigens, CD/metabolism , Autophagy/physiology , Interferon Type I/metabolism , Nuclear Proteins/metabolism , Signal Transduction/physiology , A549 Cells , Adaptor Proteins, Signal Transducing/genetics , Animals , Antigens, CD/genetics , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , HeLa Cells , Humans , Interferon Type I/genetics , Mice , Nuclear Proteins/genetics , RAW 264.7 Cells , Receptors, Immunologic , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...