Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 763
Filter
1.
J Am Chem Soc ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324666

ABSTRACT

Functional molecules derived from stereogenic phosphorus centers have important applications in the discovery of drugs and agrochemicals. They are also widely utilized as chiral ligands or organocatalysts for diverse asymmetric transformations. However, access to P-stereogenic motifs has always been regarded as a highly challenging yet desirable goal in organic synthesis. The development of general and practical methods for the stereoselective construction of synthetically versatile P(III)-stereogenic phosphines is particularly appealing but remains elusive. Herein, we describe a nickel-catalyzed asymmetric alkylation of primary phosphines with alkyl halides for the synthesis of P-stereogenic secondary phosphine-boranes with high enantioselectivity and broad substrate scope. The resulting optically active secondary phosphine-boranes allow for further stereospecific transformations, thereby establishing a modular and efficient platform for the diversity-oriented construction of P-stereogenic phosphine compounds.

2.
J Extracell Vesicles ; 13(9): e12502, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39221546

ABSTRACT

The translation of discoveries on extracellular vesicle (EV) based cancer biomarkers to personalised precision oncology requires the development of robust, sensitive and specific assays that are amenable to adoption in the clinical laboratory. Whilst a variety of elegant approaches for EV liquid biopsy have been developed, most of them remain as research prototypes due to the requirement of a high level of microfabrication and/or sophisticated instruments. Hence, this study is set to develop a simple DNA aptamer-enabled and fluorescence polarisation-based homogenous assay that eliminates the need to separate unbound detection ligands from the bound species for EV detection. High specificity is achieved by immobilising EVs with one set of antibodies and subsequently detecting them with a DNA aptamer targeting a distinct EV biomarker. This two-pronged strategy ensures the removal of most, if not all, non-EV substances in the input biofluids, including soluble proteins, protein aggregates or non-vesicular particles, prior to quantifying biomarker-positive EVs. A limit of detection of 5.0 × 106 EVs/mL was achieved with a linear quantification range of 5.0 × 108 to 2.0 × 1010 EVs/mL. Facilitated by a multiple parametric analysis strategy, this aptamer-guided fluorescence polarisation assay was capable of distinguishing EVs from three different types of solid cancer cells based on quantitative differences in the levels of the same sets of biomarkers on EVs. Given the simplicity of the method and its ease of implementation in automated clinical biochemistry analysers, this assay could be exploited for future EV-based continuous and real-time monitoring of the emergence of new macro- or micro-metastasis, cancer progression as well as the response to treatment throughout different stages of cancer management in the clinic.


Subject(s)
Aptamers, Nucleotide , Biomarkers, Tumor , Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , Liquid Biopsy/methods , Aptamers, Nucleotide/metabolism , Biomarkers, Tumor/metabolism , Fluorescence Polarization/methods , Cell Line, Tumor , Neoplasms/metabolism
3.
Food Microbiol ; 124: 104615, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244367

ABSTRACT

Seeds are important microbial vectors, and seed-associated pathogens can be introduced into a country through trade, resulting in yield and quality losses in agriculture. The aim of this study was to characterize the microbial communities associated with barley seeds, and based on which, to develop technical approaches to trace their geographical origins, and to inspect and identify quarantine pathogens. Our analysis defined the core microbiota of barley seed and revealed significant differences in the barley seed-associated microbial communities among different continents, suggesting a strong geographic specificity of the barley seed microbiota. By implementing a machine learning model, we achieved over 95% accuracy in tracing the origin of barley seeds. Furthermore, the analysis of co-occurrence and exclusion patterns provided important insights into the identification of candidate biocontrol agents or microbial inoculants that could be useful in improving barley yield and quality. A core pathogen database was developed, and a procedure for inspecting potential quarantine species associated with barley seed was established. These approaches proved effective in detecting four fungal and three bacterial quarantine species for the first time in the port of China. This study not only characterized the core microbiota of barley seeds but also provided practical approaches for tracing the regional origin of barley and identifying potential quarantine pathogens.


Subject(s)
Bacteria , Fungi , Hordeum , Microbiota , Plant Diseases , Seeds , Hordeum/microbiology , Seeds/microbiology , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fungi/isolation & purification , Fungi/classification , Fungi/genetics , China , Quarantine
4.
Planta ; 260(3): 69, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127837

ABSTRACT

MAIN CONCLUSION: Supplying monochromatic blue LED light during the day, but not at night, promotes early coloration and improves anthocyanin accumulation in the skin of grape berries. Specific light spectra, such as blue light, are known to promote the biosynthesis and accumulation of anthocyanins in fruit skins. However, research is scarce on whether supplement of blue light during different periods of one day can differ in their effect. Here, we compared the consequences of supplying blue light during the day and night on the accumulation of anthocyanins in pigmented grapevine (Vitis vinifera) berries. Two treatments of supplemented monochromatic blue light were tested, with light emitting diodes (LED) disposed close to the fruit zone, irradiating between 8:00 and 18:00 (Dayblue) or between 20:00 and 6:00 (Nightblue). Under the Dayblue treatment, berry coloration was accelerated and total anthocyanins in berry skins increased faster than the control (CK) and also when compared to the Nightblue condition. In fact, total anthocyanin content was similar between CK and Nightblue. qRT-PCR analysis indicated that Dayblue slightly improved the relative expression of the anthocyanin-structural gene UFGT and its regulator MYBA1. Instead, the expression of the light-reception and -signaling related genes CRY, HY5, HYH, and COP1 rapidly increased under Dayblue. This study provides insights into the effect of supplementing monochromatic LED blue light during the different periods of one day, on anthocyanins accumulation in the berry skin.


Subject(s)
Anthocyanins , Fruit , Light , Vitis , Vitis/radiation effects , Vitis/metabolism , Vitis/genetics , Anthocyanins/metabolism , Fruit/radiation effects , Fruit/metabolism , Gene Expression Regulation, Plant/radiation effects , Plant Proteins/metabolism , Plant Proteins/genetics , Pigmentation/radiation effects
5.
Adv Healthc Mater ; : e2402259, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212195

ABSTRACT

Epithelial cell adhesion molecule (EpCAM) gene encodes a type-I trans-membrane glycoprotein that is overexpressed in many cancerous epithelial cells and promotes tumor progression by regulating the expression of several oncogenes like c-myc and other cyclins. Because of this tumorigenic association, the EpCAM gene has been a potential target for anti-cancer therapy in recent days. Herein, it is attempted to knockout the proto-oncogenic EpCAM expression by efficiently delivering an all-in-one Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) plasmid via a lipid nanoparticle system made out of synthetic stimuli-sensitive lipids. The plasmid possesses the necessary information in the form of a guide RNA targeted to the EpCAM gene. The aptamer decorated system selectively targets EpCAM overexpressed cells and efficiently inhibits the genetic expression. It has explored the pH-responsive property of the developed lipid nanoparticles and monitored their efficacy in various cancer cell lines of different origins with elevated EpCAM levels. The phenomenon has further been validated in vivo in non-immunocompromised mouse tumor models. Overall, the newly developed aptamer decorated lipid nanoparticle system has been proven to be efficacious for the delivery of EpCAM-targeted CRISPR/Cas9 plasmid.

6.
ACS Sens ; 9(8): 4216-4226, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39068608

ABSTRACT

Thermoelectric (TE) hydrogels, mimicking human skin, possessing temperature and strain sensing capabilities, are well-suited for human-machine interaction interfaces and wearable devices. In this study, a TE hydrogel with high toughness and temperature responsiveness was created using the Hofmeister effect and TE current effect, achieved through the cross-linking of PVA/PAA/carboxymethyl cellulose triple networks. The Hofmeister effect, facilitated by Na+ and SO42- ions coordination, notably increased the hydrogel's tensile strength (800 kPa). Introduction of Fe2+/Fe3+ as redox pairs conferred a high Seebeck coefficient (2.3 mV K-1), thereby enhancing temperature responsiveness. Using this dual-responsive sensor, successful demonstration of a feedback mechanism combining deep learning with a robotic hand was accomplished (with a recognition accuracy of 95.30%), alongside temperature warnings at various levels. It is expected to replace manual work through the control of the manipulator in some high-temperature and high-risk scenarios, thereby improving the safety factor, underscoring the vast potential of TE hydrogel sensors in motion monitoring and human-machine interaction applications.


Subject(s)
Deep Learning , Hydrogels , Temperature , Wearable Electronic Devices , Humans , Hydrogels/chemistry , Acrylic Resins/chemistry , Carboxymethylcellulose Sodium/chemistry , Polyvinyl Alcohol/chemistry , Tensile Strength , Robotics
8.
J Gynecol Oncol ; 35(5): e99, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38872480

ABSTRACT

OBJECTIVE: First-line bevacizumab plus carboplatin and paclitaxel (CP) is approved for stage III/IV ovarian cancer treatment following initial surgical resection, based on global phase III GOG-0218 and ICON7 trials. This study evaluated the efficacy and safety of bevacizumab + CP as first-line ovarian cancer therapy in Chinese patients. METHODS: Patients with newly diagnosed, International Federation of Gynecology and Obstetrics (FIGO) stage III/IV epithelial ovarian, fallopian tube, or primary peritoneal cancer post-primary surgery were randomized 1:1 to receive 6 cycles of CP with bevacizumab/placebo, followed by bevacizumab/placebo maintenance until unacceptable toxicity or disease progression. Primary endpoint was investigator-assessed progression-free survival (PFS). Stratification factors were FIGO stage and debulking status (stage III optimally debulked vs stage III suboptimally debulked vs stage IV) and Eastern Cooperative Oncology Group performance status (0 vs 1 or 2). RESULTS: Of randomized patients, 51 received bevacizumab + CP and 49 received placebo + CP. Median PFS was 22.6 months with bevacizumab + CP (95% confidence interval [CI]=18.6, not estimable) and 12.3 months (95% CI=9.5, 15.0) with placebo + CP (stratified hazard ratio=0.30; 95% CI=0.17, 0.53). Treatment-related grade 3/4 adverse events occurred in 46 of 49 (94%) patients receiving bevacizumab + CP, and 34 of 50 (68%) receiving placebo + CP. CONCLUSION: Bevacizumab + CP showed clinically meaningful improvement in PFS vs placebo + CP, consistent with GOG-0218 results. Safety data were aligned with the known bevacizumab safety profile. These results support first-line bevacizumab + CP therapy in Chinese patients with ovarian cancer. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03635489.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Bevacizumab , Carboplatin , Carcinoma, Ovarian Epithelial , Fallopian Tube Neoplasms , Neoplasm Staging , Ovarian Neoplasms , Paclitaxel , Peritoneal Neoplasms , Progression-Free Survival , Adult , Aged , Female , Humans , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bevacizumab/administration & dosage , Bevacizumab/adverse effects , Carboplatin/administration & dosage , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/mortality , China , East Asian People , Fallopian Tube Neoplasms/drug therapy , Fallopian Tube Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/mortality , Paclitaxel/administration & dosage , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/pathology
9.
Sensors (Basel) ; 24(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38894213

ABSTRACT

In this study, we investigated reconfigurable intelligent surface (RIS)-assisted device-to-device (D2D) communication systems over Nakagami-m fading channels. To enhance the reliability of RIS-assisted D2D communications, we utilized the rate-splitting multiple access (RSMA) technique to maximize the achievable ergodic rate for our considered systems. Specifically, both devices decoded the common symbol by treating private symbols as interference, and then each private symbol was decoded by treating the other as interference. In order to maximize the achievable ergodic rate at the destination, we analyzed the achievable ergodic rate of the RIS link and the D2D link, and the destination jointly decoded both symbols transmitted from the source and device by involving the maximum ratio combination (MRC). We obtained a closed-form expression for the achievable ergodic rate of the proposed RIS-assisted D2D communication system. Finally, we investigated the influence of power allocation factors and the number of reflective elements on the achievable ergodic rate. As seen by the numerical results, there was a good match between the analysis and simulation results, as well as significant superiority compared with existing works.

10.
Nanoscale ; 16(24): 11457-11479, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38856692

ABSTRACT

Extracellular vesicles (EVs) are cell-derived nanosized membrane-bound vesicles that are important intercellular signalling regulators in local cell-to-cell and distant cell-to-tissue communication. Their inherent capacity to transverse cell membranes and transfer complex bioactive cargo reflective of their cell source, as well as their ability to be modified through various engineering and modification strategies, have attracted significant therapeutic interest. Molecular bioengineering strategies are providing a new frontier for EV-based therapy, including novel mRNA vaccines, antigen cross-presentation and immunotherapy, organ delivery and repair, and cancer immune surveillance and targeted therapeutics. The revolution of EVs, their diversity as biocarriers and their potential to contribute to intercellular communication, is well understood and appreciated but is ultimately dependent on the development of methods and techniques for their isolation, characterization and enhanced targeting. As single-stranded oligonucleotides, aptamers, also known as chemical antibodies, offer significant biological, chemical, economic, and therapeutic advantages in terms of their size, selectivity, versatility, and multifunctional programming. Their integration into the field of EVs has been contributing to the development of isolation, detection, and analysis pipelines associated with bioengineering strategies for nano-meets-molecular biology, thus translating their use for therapeutic and diagnostic utility.


Subject(s)
Aptamers, Nucleotide , Extracellular Vesicles , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Humans , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/therapeutic use , Neoplasms/therapy , Neoplasms/metabolism , Animals , Immunotherapy , Cell Communication
11.
PLoS One ; 19(6): e0304973, 2024.
Article in English | MEDLINE | ID: mdl-38838022

ABSTRACT

Cities are commonly recognized as the immediate hinterland of ports and play a crucial role in fostering the sustainable development of ports. Therefore, it is imperative to investigate the influence of cities on ports. By employing panel data from 2001 to 2021 for both ports and cities in the Bohai Rim region, this study examines the spatial spillover effect of urban economy on port efficiency using the spatial error model (SEM). The findings show that urban economies have a significant spatial spillover effect on port efficiency, but this effect diminishes across different spatial matrices. In particular, the geographical matrix demonstrates a stronger spatial spillover effect of the urban economy on port efficiency. These research findings help to establish a collaborative mechanism for port-city development and provide useful insights for government management decision-making.


Subject(s)
Cities , Humans , China , Sustainable Development/economics
12.
J Control Release ; 371: 530-554, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857787

ABSTRACT

Wound management remains a great challenge for clinicians due to the complex physiological process of wound healing. Porous silicon (PSi) with controlled pore morphology, abundant surface chemistry, unique photonic properties, good biocompatibility, easy biodegradation and potential bioactivity represent an exciting class of materials for various biomedical applications. In this review, we focus on the recent progress of PSi in the design of advanced sensing and delivery systems for wound management applications. Firstly, we comprehensively introduce the common type, normal healing process, delaying factors and therapeutic drugs of wound healing. Subsequently, the typical fabrication, functionalization and key characteristics of PSi have been summarized because they provide the basis for further use as biosensing and delivery materials in wound management. Depending on these properties, the rise of PSi materials is evidenced by the examples in literature in recent years, which has emphasized the robust potential of PSi for wound monitoring, treatment and theranostics. Finally, challenges and opportunities for the future development of PSi-based sensors and delivery systems for wound management applications are proposed and summarized. We hope that this review will help readers to better understand current achievements and future prospects on PSi-based sensing and delivery systems for advanced wound management.


Subject(s)
Drug Delivery Systems , Silicon , Wound Healing , Silicon/chemistry , Humans , Porosity , Wound Healing/drug effects , Animals , Drug Delivery Systems/methods , Biosensing Techniques/methods
13.
Sci Technol Adv Mater ; 25(1): 2345041, 2024.
Article in English | MEDLINE | ID: mdl-38742153

ABSTRACT

Exosomes, a type of extracellular vesicles, have attracted considerable attention due to their ability to provide valuable insights into the pathophysiological microenvironment of the cells from which they originate. This characteristic implicates their potential use as diagnostic disease biomarkers clinically, including cancer, infectious diseases, neurodegenerative disorders, and cardiovascular diseases. Aptasensors, which are electrochemical aptamers based biosensing devices, have emerged as a new class of powerful detection technology to conventional methods like ELISA and Western analysis, primarily because of their capability for high-performance bioanalysis. This review covers the current research landscape on the detection of exosomes utilizing nanoarchitectonics strategy for the development of electrochemical aptasensors. Strategies involving signal amplification and biofouling prevention are discussed, with an emphasis on nanoarchitectonics-based bio-interfaces, showcasing their potential to enhance sensitivity and selectivity through optimal conduction and mass transport properties. The ongoing challenges to broaden the clinical applications of these biosensors are also highlighted.


This review emphasizes the significant impact of integrating nanoarchitectonics into aptamer-based electrochemical biosensors for exosome detection, thereby enhancing early disease detection and monitoring disease progression in clinical settings.

14.
Int J Pharm ; 659: 124247, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38782153

ABSTRACT

There is a growing and urgent need for developing novel biomaterials and therapeutic approaches for efficient wound healing. Microneedles (MNs), which can penetrate necrotic tissues and biofilm barriers at the wound and deliver active ingredients to the deeper layers in a minimally invasive and painless manner, have stimulated the interests of many researchers in the wound-healing filed. Among various materials, polymeric MNs have received widespread attention due to their abundant material sources, simple and inexpensive manufacturing methods, excellent biocompatibility and adjustable mechanical strength. Meanwhile, due to the unique properties of nanomaterials, the incorporation of nanomaterials can further extend the application range of polymeric MNs to facilitate on-demand drug release and activate specific therapeutic effects in combination with other therapies. In this review, we firstly introduce the current status and challenges of wound healing, and then outline the advantages and classification of MNs. Next, we focus on the manufacturing methods of polymeric MNs and the different raw materials used for their production. Furthermore, we give a summary of polymeric MNs incorporated with several common nanomaterials for chronic wounds healing. Finally, we discuss the several challenges and future prospects of transdermal drug delivery systems using nanomaterials-based polymeric MNs in wound treatment application.


Subject(s)
Drug Delivery Systems , Nanostructures , Needles , Polymers , Wound Healing , Wound Healing/drug effects , Humans , Polymers/chemistry , Animals , Nanostructures/administration & dosage , Administration, Cutaneous , Microinjections/methods
15.
Biosens Bioelectron ; 258: 116381, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38744116

ABSTRACT

Surface proteins on the membrane of nano-sized extracellular vesicles (EVs) not only play crucial roles in cell-to-cell communication, but also are specific binding targets for EV detection, isolation and tracking. The low abundance of protein biomarkers on EV surface, the formation of clusters and the complex EV surface network impose significant challenges to the study of EVs. Employing bulky sized affinity ligands, such as antibodies, in the detection and characterization of these vesicles often result in reduced sensitivity of detection or poor quantification of proteins on the EV surface. By virtue of their small size and high specificity, Affibody molecules emerge as a potential alternative to their monoclonal antibody counterparts as robust affinity ligands in EV research. In this study, we present a theoretical framework on the superiority of anti-HER2 Affibodies over anti-HER2 antibodies in labeling and detecting HER2-positive EVs, followed by the demonstration of the advantages of HER2 Affibodies in accessing EV surface and the detection of EVs through multiple types of approaches including fluorescence intensity, colorimetry, and fluorescence polarization. HER2 Affibodies outperformed by 10-fold over three HER2 antibody clones in accessing HER2-positive EVs derived from different human cancer cell lines. Furthermore, HRP-Affibody molecules could detect EVs from cancer cells spiked into human serum with at least a 2-fold higher sensitivity compared with that of their antibody counterparts. In addition, in fluorescence polarization assays in which no separation of free from bound ligand is required, FITC-labeled HER2 Affibodies could sensitively detect HER2-positive EVs with a clinically relevant limit of detection, whilst HER2 antibodies failed to detect EVs in the same conditions. With the demonstrated superiority in accessing and detecting surface targets over bulky-sized antibodies in EVs, Affibodies may become the next-generation of affinity ligands in the precise characterization and quantification of molecular architecture on the surface of EVs.


Subject(s)
Biosensing Techniques , Extracellular Vesicles , Receptor, ErbB-2 , Extracellular Vesicles/chemistry , Humans , Ligands , Biosensing Techniques/methods , Cell Line, Tumor , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology
16.
Sci Rep ; 14(1): 12040, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802498

ABSTRACT

This paper presents a frequency selective surface (FSS) with a wideband second-order bandpass response in the dual-band of microwave and millimeter wave. The overall structure consists of three layers of metal pattern and two layers of thin dielectric substrate. The top and bottom metal layers have capacitive patches with integrated curled Jerusalem cross slot resonators, while the intermediate metal layer has an inductive grid structure with cross-shaped slot resonators. The incorporated slot resonators play a pivotal role in achieving the desired transmission poles or zeros, which enable a wideband second-order filtering response in the dual-band and a quick roll-off at the passband edges, increasing the efficacy of electromagnetic shielding. To fully investigate the structure's frequency response, an equivalent circuit model of the structure is created, spanning the complete frequency range of 5-50 GHz. Physical samples are created and measured to confirm the suggested approach's efficacy. The passband center frequencies of the FSS are found at f1 = 19.42 GHz and f2 = 42.78 GHz, and the - 3 dB bandwidth is 4.34 GHz (17.25-21.59 GHz) and 8.54 GHz (38.51-47.05 GHz), respectively. The simulation results align well with the experimental data. The transmission response rapidly transitions from the passband to the stopband at the passband boundaries.

17.
J Hazard Mater ; 472: 134481, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723483

ABSTRACT

The membrane interface probe (MIP) is an efficient and economical in-situ tool for chlorinated hydrocarbon (CH) contaminated site investigation. Given that the interpretation of MIP test is currently limited to a qualitative level, a theoretical model considering multiphase flow and multifield coupling is firstly proposed to simulate MIP test process. This model can consider phase change, membrane effect, adsorption and dissolution of the CH liquid, gas diffusion, and evaporation. Then, the model is used to study the changes in soil temperature and soil CH concentration during MIP test, as well as the influences of soil CH concentration and soil properties (initial water saturation, soil intrinsic permeability, and thermal properties) on MIP response. Finally, a simplified MIP interpretation model is developed based on parametric analysis results and verified against field and laboratory test data. It is found that the soil CH concentration, rather than soil properties, dominates the MIP response. The simplified interpretation model can deliver practical prediction of the CH concentration through the detected results by MIP, which may improve the applicability of MIP.

18.
Small Methods ; : e2301644, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593356

ABSTRACT

Surface-assisted laser desorption/ionization (SALDI) mass spectrometry imaging (MSI) holds great value in spatial metabolomics and tumor diagnosis. Tissue imprinting on the SALDI target can avoid laser-induced tissue ablation and simplifies the sample preparation. However, the tissue imprinting process always causes lateral diffusion of biomolecules, thereby losing the fidelity of metabolite distribution on tissue. Herein, a membrane-mediated imprinting mass spectrometry imaging (MMI-MSI) strategy is proposed using isoporous nuclepore track-etched membrane as a mediating imprinting layer to selectively transport metabolites through uniform and vertical pores onto silicon nanowires (SiNWs) array. Compared with conventional direct imprinting technique, MMI-MSI can not only exclude the adsorption of large biomolecules but also avoid the lateral diffusion of metabolites. The whole time for MMI-based sample preparation can be reduced to 2 min, and the lipid peak number can increase from 46 to 113 in kidney tissue detection. Meanwhile, higher resolution of MSI can be achieved due to the confinement effect of the pore channel in the diffusion of metabolites. Based on MMI-MSI, the tumor margins of liver cancer can be clearly discriminated and their different subtypes can be precisely classified. This work demonstrates MMI-MSI is a rapid, highly sensitive, robust and high-resolution technique for spatially-resolved metabolomics and pathological diagnosis.

19.
Sci Rep ; 14(1): 9415, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658637

ABSTRACT

This work presents a novel tri-band bandpass frequency selective surface (FSS) that achieves high-order filtering responses in different frequency bands by means of a complementary structure. The proposed FSS is composed of three metal periodic arrays, which are separated by multilayer dielectric substrates. The gridded-double convoluted loop (G-DCL) structure, which is the middle layer structure, is a hybrid resonator that generates different resonant frequencies. The top and bottom layer structures are designed as complementary structures to the middle layer. To accurately describe the frequency responses, an equivalent circuit model (ECM) has been constructed over the entire band from 0 to 16 GHz. The results of the simulation indicate that the developed FSS can generate three pass-bands operating at 3.79 GHz, 8.34 GHz, and 12.52 GHz, respectively, and - 3 dB fractional bandwidths are 52.8%, 13.7%, and 19.7%. The transmission responses at the edges of each passband show a quick roll-off from the passband to the stopband, and there is significant out-of-band suppression between adjacent passbands. Moreover, the FSS maintains excellent angular and polarization stability within a 50° range. For verification, the tri-band FSS has been fabricated and tested. The experimental results match the simulation results, validating the accuracy of the FSS design.

20.
Open Forum Infect Dis ; 11(4): ofae163, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38585185

ABSTRACT

Background: The aim of this study was to investigate the changes of epidemic characteristics of influenza activity pre- and post-coronavirus disease 2019 (COVID-19) in Beijing, China. Methods: Epidemiologic data were collected from the influenza surveillance system in Beijing. We compared epidemic intensity, epidemic onset and duration, and influenza transmissibility during the 2022-2023 season with pre-COVID-19 seasons from 2014 to 2020. Results: The overall incidence rate of influenza in the 2022-2023 season was significantly higher than that of the pre-COVID-19 period, with the record-high level of epidemic intensity in Beijing. The onset and duration of the influenza epidemic period in 2022-2023 season was notably later and shorter than that of the 2014-2020 seasons. Maximum daily instantaneous reproduction number (Rt) of the 2022-2023 season (Rt = 2.31) was much higher than that of the pre-COVID-19 period (Rt = 1.49). The incidence of influenza A(H1N1) and A(H3N2) were the highest among children aged 0-4 years and 5-14 years, respectively, in the 2022-2023 season. Conclusions: A late, intense, and short-term peak influenza activity was observed in the 2022-2023 season in Beijing. Children <15 years old were impacted the most by the interruption of influenza circulation during the COVID-19 pandemic. Maintaining continuous surveillance and developing targeted public health strategies of influenza is necessary.

SELECTION OF CITATIONS
SEARCH DETAIL