Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 270: 110671, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32721281

ABSTRACT

The environmental information disclosure system is regarded as an important environmental management tool for supervising the environmental behavior of listed companies in China. To explore what drives the environmental information disclosure, a configurational analysis targeted at 264 China's key pollutant-discharge listed companies was studied by fuzzy-set qualitative comparative analysis (fs/QCA). The results showed that there were three types of paths to drive the environmental information disclosure: "Strict regulation - low resources - weak capability", "Strict regulation - low resources - strong capability" and "Strict regulation - high resources - strong capability", and that strict environmental regulation played a greatly significant role for promoting the environmental information disclosure level. The research provides a theoretical basis for the effectiveness of environmental regulation on environmental information disclosure, and it charts the future direction for environmental management in China.


Subject(s)
Environmental Pollutants , China , Disclosure
2.
Small ; : e1800785, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29931728

ABSTRACT

Despite the therapeutic usefulness of near-infrared irradiation (NIR)-induced potent photothermal effects (PTE) and photodynamic effects (PDE), they inevitably damage normal tissues, often posing threat to life when treating tumors adjacent to key organs or major blood vessels. In this study, the frequently overlooked, "weak" PTE and PDE (no killing capability) are employed to synergize chemotherapy against multidrug resistance (MDR) without impairing normal tissues. An NIR-responsive nanosystem, gold (Au)-nanodot-decorated hollow carbon nanospheres coated with hyaluronic acid, is synthesized as a doxorubicin (DOX) carrier with excellent photothermal and photodynamic properties. Upon low-level infrared irradiation, the mild heat of weak PTE moderately boosts DOX unloading, meanwhile the weak PDE moderately disturbs the P-glycoprotein function for retaining intracellular DOX by impairing mitochondrial ATP production. These two "moderate" alterations are quantitatively and functionally sufficient to augment the efficacy of chemotherapy in reversing MDR without damaging neighboring tissue. Thus, this work creates a gold-dot-decorated nanocarbon spheres based nanosystem for trimodal therapy, reveals the therapeutic value of the frequently ignored weak PTE/PDE, and demonstrates that synergizing with chemotherapy to overcome drug resistance does not necessarily require potent PTE/PDE.

3.
ACS Appl Mater Interfaces ; 8(34): 22563-73, 2016 Aug 31.
Article in English | MEDLINE | ID: mdl-27502735

ABSTRACT

The development of carbon based hollow-structured nanospheres (HNSs) materials has stimulated growing interest due to their controllable structure, high specific surface area, large void space, enhanced mass transport, and good biocompatibility. The incorporation of functional nanomaterials into their core and/or shell opens new horizons in designing functionalized HNSs for a wider spectrum of promising applications. In this work, we report a new type of functionalized HNSs based on Pd nanoparticles (NPs) decorated double shell structured N-doped graphene quantum dots (NGQDs)@N-doped carbon (NC) HNSs, with ultrafine Pd NPs and "nanozyme" NGQDs as dual signal-amplifying nanoprobes, and explore their promising application as a highly efficient electrocatalyst in electrochemical sensing of a newly emerging biomarker, i.e., hydrogen peroxide (H2O2), for cancer detection. Due to the synergistic effect of the robust and conductive HNS supports and catalytically active Pd NPs and NGQD in facilitating electron transfer, the NGQD@NC@Pd HNS hybrid material exhibits high electrocatalytic activity toward the direct reduction of H2O2 and can promote the electrochemical reduction reaction of H2O2 at a favorable potential of 0 V, which effectively restrains the redox of most electroactive species in physiological samples and eliminates interference signals. The resultant electrochemical H2O2 biosensor based hybrid HNSs materials demonstrates attractive performance, including low detection limit down to nanomole level, short response time within 2 s, as well as high sensitivity, reproducibility, selectivity, and stability, and have been used in real-time tracking of trace amounts of H2O2 secreted from different living cancer cells in a normal state and treated with chemotherapy and radiotherapy.

4.
ACS Appl Mater Interfaces ; 8(13): 8620-6, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-27002683

ABSTRACT

A novel donor-acceptor-donor-acceptor (D-A1-D-A2) π-conjugated copolymer (PDBPyDT2FBT) has been prepared by Stille coupling reaction. It is found that PDBPyDT2FBT exhibits low LUMO energy level mainly because of multiple electron-deficient units and donor-acceptor interaction, which is favorable to obtain more efficient electron injection and transport in organic thin-film transistors (OTFTs). Moreover, introducing two electron-deficient moieties into the thiophene-containing copolymer increases the length of conjugated main chain and enhances the coplanarity of the backbone, which may be beneficial for promoting the molecular crystallinity and improving molecular ordering capability at low temperatures. High electron and hole mobilities up to 0.65 and 0.24 cm(2) V(-1) s(-1) were obtained at relatively low annealing temperatures of 100 and 80 °C, respectively, implying that PDBPyDT2FBT is a promising ambipolar polymer semiconductor applied in low-cost and large-area manufacturing of OTFTs.

SELECTION OF CITATIONS
SEARCH DETAIL
...