Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791176

ABSTRACT

Extensive microbial interactions occur within insect hosts. However, the interactions between the Huanglongbing (HLB) pathogen and endosymbiotic bacteria within the Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) in wild populations remain elusive. Thus, this study aimed to detect the infection rates of HLB in the ACP across five localities in China, with a widespread prevalence in Ruijin (RJ, 58%), Huidong (HD, 28%), and Lingui (LG, 15%) populations. Next, microbial communities of RJ and LG populations collected from citrus were analyzed via 16S rRNA amplicon sequencing. The results revealed a markedly higher microbial diversity in the RJ population compared to the LG population. Moreover, the PCoA analysis identified significant differences in microbial communities between the two populations. Considering that the inter-population differences of Bray-Curtis dissimilarity in the RJ population exceeded those between populations, separate analyses were performed. Our findings indicated an increased abundance of Enterobacteriaceae in individuals infected with HLB in both populations. Random forest analysis also identified Enterobacteriaceae as a crucial indicator of HLB infection. Furthermore, the phylogenetic analysis suggested a potential regulatory role of ASV4017 in Enterobacteriaceae for ACP, suggesting its possible attractant activity. This research contributes to expanding the understanding of microbial communities associated with HLB infection, holding significant implications for HLB prevention and treatment.


Subject(s)
Enterobacteriaceae , Hemiptera , Phylogeny , Plant Diseases , RNA, Ribosomal, 16S , Animals , Hemiptera/microbiology , Enterobacteriaceae/genetics , Enterobacteriaceae/classification , Enterobacteriaceae/pathogenicity , RNA, Ribosomal, 16S/genetics , Plant Diseases/microbiology , China/epidemiology , Citrus/microbiology , Microbiota
2.
Curr Biol ; 30(24): 4837-4845.e5, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33035486

ABSTRACT

Progress has been made in developing the maternally inherited endosymbiotic bacterium Wolbachia as a tool for protecting humans from mosquito-borne diseases. In contrast, Wolbachia-based approaches have not yet been developed for the protection of plants from insect pests and their associated diseases, with a major challenge being the establishment of artificial Wolbachia infections expressing desired characteristics in the hemipterans that transmit the majority of plant viruses. Here, we report stable introduction of Wolbachia into the brown planthopper, Nilaparvata lugens, the most destructive rice pest that annually destroys millions of hectares of staple crops. The Wolbachia strain wStri from the small brown planthopper, Laodelphax striatellus, was transferred to this new host, where it showed high levels of cytoplasmic incompatibility, enabling rapid invasion of laboratory populations. Furthermore, wStri inhibited infection and transmission of Rice ragged stunt virus and mitigated virus-induced symptoms in rice plants, opening up the development of Wolbachia-based strategies against major agricultural pests and their transmitted pathogens. VIDEO ABSTRACT.


Subject(s)
Crop Protection/methods , Hemiptera/microbiology , Insect Vectors/microbiology , Oryza/virology , Wolbachia/pathogenicity , Animals , Feasibility Studies , Hemiptera/virology , Oryza/parasitology , Plant Diseases/prevention & control , Plant Diseases/virology , Reoviridae/pathogenicity
3.
Microbiome ; 8(1): 104, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32616041

ABSTRACT

BACKGROUND: Host-associated microbial communities play an important role in the fitness of insect hosts. However, the factors shaping microbial communities in wild populations, including genetic background, ecological factors, and interactions among microbial species, remain largely unknown. RESULTS: Here, we surveyed microbial communities of the small brown planthopper (SBPH, Laodelphax striatellus) across 17 geographical populations in China and Japan by using 16S rRNA amplicon sequencing. Using structural equation models (SEM) and Mantel analyses, we show that variation in microbial community structure is likely associated with longitude, annual mean precipitation (Bio12), and mitochondrial DNA variation. However, a Wolbachia infection, which is spreading to northern populations of SBPH, seems to have a relatively greater role than abiotic factors in shaping microbial community structure, leading to sharp decreases in bacterial taxon diversity and abundance in host-associated microbial communities. Comparative RNA-Seq analyses between Wolbachia-infected and -uninfected strains indicate that the Wolbachia do not seem to alter the immune reaction of SBPH, although Wolbachia affected expression of metabolism genes. CONCLUSION: Together, our results identify potential factors and interactions among different microbial species in the microbial communities of SBPH, which can have effects on insect physiology, ecology, and evolution. Video Abstract.


Subject(s)
Hemiptera/microbiology , Microbiota , Wolbachia/physiology , Animals , China , Japan , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Wolbachia/genetics
4.
Mol Ecol ; 28(14): 3306-3323, 2019 07.
Article in English | MEDLINE | ID: mdl-31183910

ABSTRACT

While it has been proposed in several taxa that the mitochondrial genome is associated with adaptive evolution to different climatic conditions, making links between mitochondrial haplotypes and organismal phenotypes remains a challenge. Mitonuclear discordance occurs in the small brown planthopper (SBPH), Laodelphax striatellus, with one mitochondrial haplogroup (HGI) more common in the cold climate region of China relative to another form (HGII) despite strong nuclear gene flow, providing a promising model to investigate climatic adaptation of mitochondrial genomes. We hypothesized that cold adaptation through HGI may be involved, and considered mitogenome evolution, population genetic analyses, and bioassays to test this hypothesis. In contrast to our hypothesis, chill-coma recovery tests and population genetic tests of selection both pointed to HGII being involved in cold adaptation. Phylogenetic analyses revealed that HGII is nested within HGI, and has three nonsynonymous changes in ND2, ND5 and CYTB in comparison to HGI. These molecular changes likely increased mtDNA copy number, cold tolerance and fecundity of SBPH, particularly through a function-altering amino acid change involving M114T in ND2. Nuclear background also influenced fecundity and chill recovery (i.e., mitonuclear epistasis) and protein modelling indicates possible nuclear interactions for the two nonsynonymous changes in ND2 and CYTB. The high occurrence frequency of HGI in the cold climate region of China remains unexplained, but several possible reasons are discussed. Overall, our study points to a link between mtDNA variation and organismal-level evolution and suggests a possible role of mitonuclear interactions in maintaining mtDNA diversity.


Subject(s)
Evolution, Molecular , Hemiptera/genetics , Mitochondria/genetics , Quantitative Trait, Heritable , Adaptation, Physiological/genetics , Animals , Body Size/genetics , DNA, Mitochondrial/genetics , Female , Fertility/genetics , Gene Amplification , Genetics, Population , Genome, Mitochondrial , Geography , Haplotypes/genetics , Male , Phylogeny , Structural Homology, Protein , Temperature
5.
J Econ Entomol ; 112(5): 2362-2368, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31145796

ABSTRACT

Deciphering genetic structure and inferring migration routes of insects with high migratory ability have been challenging, due to weak genetic differentiation and limited resolution offered by traditional genotyping methods. Here, we tested the ability of double digest restriction-site associated DNA sequencing (ddRADseq)-based single nucleotide polymorphisms (SNPs) in revealing the population structure relative to 13 microsatellite markers by using four small brown planthopper populations as subjects. Using ddRADseq, we identified 230,000 RAD loci and 5,535 SNP sites, which were present in at least 80% of individuals across the four populations with a minimum sequencing depth of 10. Our results show that this large SNP panel is more powerful than traditional microsatellite markers in revealing fine-scale population structure among the small brown planthopper populations. In contrast to the mixed population structure suggested by microsatellites, discriminant analysis of principal components (DAPC) of the SNP dataset clearly separated the individuals into four geographic populations. Our results also suggest the DAPC analysis is more powerful than the principal component analysis (PCA) in resolving population genetic structure of high migratory taxa, probably due to the advantages of DAPC in using more genetic variation and the discriminant analysis function. Together, these results point to ddRADseq being a promising approach for population genetic and migration studies of small brown planthopper.


Subject(s)
Hemiptera , Animals , Genetics, Population , Microsatellite Repeats , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
6.
Insect Biochem Mol Biol ; 85: 11-20, 2017 06.
Article in English | MEDLINE | ID: mdl-28412513

ABSTRACT

Wolbachia are endosymbionts that infect many species of arthropods and nematodes. Wolbachia-induced cytoplasmic incompatibility (CI) is the most common phenotype in affected hosts, involving embryonic lethality in crosses between Wolbachia-infected males and uninfected females. The molecular mechanisms underlying this phenomenon are currently unclear. Here we examine the molecular correlates of the Wolbachia infection in Laodelphax striatellus (Fallén), an important rice pest, where embryonic lethality is strong and almost complete. We compared the gene expression of 4-day-old Wolbachia-infected and uninfected L. striatellus testes to identify candidate genes for paternal-effect embryonic lethality induction. Based on microarray analysis, iLvE was the most down-regulated gene; this gene mediates branched-chain amino acid (BCAA) biosynthesis and participates in many processes related to reproductive performance. After knocking down iLvE by RNAi in uninfected male L. striatellus, male fertility was reduced, leading to a decrease in embryo hatching rates, but fertility was rescued in crosses between these males and Wolbachia-infected females. Removal of BCAA in chemically-defined diets of uninfected males also led to a loss of male fertility. Low amino acid nutrition may enhance exposure time of sperm to Wolbachia in the testes to affect adult reproduction in L. striatellus by reducing the number of sperm transferred per mating by males. These results indicate that Wolbachia may decrease male fertility in L. striatellus by acting on iLvE, a key factor of BCAA biosynthesis, and delaying sperm maturation.


Subject(s)
Amino Acids/biosynthesis , Hemiptera/microbiology , Host-Pathogen Interactions , Wolbachia/physiology , Animals , Copulation , Female , Fertility , Hemiptera/metabolism , Insect Proteins/metabolism , Male , Oligonucleotide Array Sequence Analysis , Testis/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...