Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
J Food Sci ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700316

ABSTRACT

The objective of this paper was to evaluate the effect of spray drying (SD), spray freeze-drying (SFD), freeze-drying (FD), and microwave freeze-drying (MFD) on the characteristics of fish oil (FO) microcapsules. The physicochemical properties, morphology, fatty acid composition, and stability of the microcapsules were analyzed. The encapsulation efficiencies of microcapsules dried by SD, SFD, FD, and MFD were 86.98%, 77.79%, 63.29%, and 57.89%, respectively. SD microcapsules exhibited superior properties in terms of effective loading capacity, color, and flowability. Conversely, SFD microcapsules demonstrated improved solubility. Microencapsulation positively affected the thermal stability of FO, but the content of unsaturated fatty acids decreased. The findings from the storage experiment indicated that the oxidative stability of SD fish oil microcapsules was marginally lower compared to microcapsules produced through three alternative drying techniques, all of which were based on the FD concept. The comparison of various drying methods and their effects on the quality of FO microcapsules offers valuable insights that can serve as a foundation for the industrial production of high-quality microcapsules.

2.
EClinicalMedicine ; 72: 102622, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745965

ABSTRACT

Background: The role of transarterial chemoembolization (TACE) in the treatment of advanced hepatocellular carcinoma (HCC) is unconfirmed. This study aimed to assess the efficacy and safety of immune checkpoint inhibitors (ICIs) plus anti-vascular endothelial growth factor (anti-VEGF) antibody/tyrosine kinase inhibitors (TKIs) with or without TACE as first-line treatment for advanced HCC. Methods: This nationwide, multicenter, retrospective cohort study included advanced HCC patients receiving either TACE with ICIs plus anti-VEGF antibody/TKIs (TACE-ICI-VEGF) or only ICIs plus anti-VEGF antibody/TKIs (ICI-VEGF) from January 2018 to December 2022. The study design followed the target trial emulation framework with stabilized inverse probability of treatment weighting (sIPTW) to minimize biases. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), objective response rate (ORR), and safety. The study is registered with ClinicalTrials.gov, NCT05332821. Findings: Among 1244 patients included in the analysis, 802 (64.5%) patients received TACE-ICI-VEGF treatment, and 442 (35.5%) patients received ICI-VEGF treatment. The median follow-up time was 21.1 months and 20.6 months, respectively. Post-application of sIPTW, baseline characteristics were well-balanced between the two groups. TACE-ICI-VEGF group exhibited a significantly improved median OS (22.6 months [95% CI: 21.2-23.9] vs 15.9 months [14.9-17.8]; P < 0.0001; adjusted hazard ratio [aHR] 0.63 [95% CI: 0.53-0.75]). Median PFS was also longer in TACE-ICI-VEGF group (9.9 months [9.1-10.6] vs 7.4 months [6.7-8.5]; P < 0.0001; aHR 0.74 [0.65-0.85]) per Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1. A higher ORR was observed in TACE-ICI-VEGF group, by either RECIST v1.1 or modified RECIST (41.2% vs 22.9%, P < 0.0001; 47.3% vs 29.7%, P < 0.0001). Grade ≥3 adverse events occurred in 178 patients (22.2%) in TACE-ICI-VEGF group and 80 patients (18.1%) in ICI-VEGF group. Interpretation: This multicenter study supports the use of TACE combined with ICIs and anti-VEGF antibody/TKIs as first-line treatment for advanced HCC, demonstrating an acceptable safety profile. Funding: National Natural Science Foundation of China, National Key Research and Development Program of China, Jiangsu Provincial Medical Innovation Center, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Nanjing Life Health Science and Technology Project.

3.
ACS Omega ; 9(16): 18449-18457, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38680377

ABSTRACT

To provide a theoretical basis for the frozen storage of potato-oat composite dough and its products, this investigation examines changes in the quality of potato-oat composite dough and its resulting product during freeze-thaw cycles. The study measured key aspects such as moisture content, dynamic rheological properties, water state, protein secondary structure, color, and sensory assessment. The influence of these factors on the product's quality is analyzed. The findings revealed that the freeze-thaw treatment caused a reduction in water content, freezable water, and deeply bound water, as well as an increase in weakly bound water, ß-sheet, random coil, and α-helix, and a decreased ß-turn of the potato-oat composite dough. Additionally, the dough treated by freeze-thaw cycles resulted in darker color, and the sensory properties of the product were affected significantly after exceeding three freeze-thaw cycles. Moreover, an increase in the number of freeze-thaw cycles resulted in an upward trend of moisture content for the composite dough, whereas G' initially increased and then decreased. The G″ of the composite dough peaked after the third freeze-thaw cycle. Overall, the composite dough quality significantly deteriorated at the fourth freeze-thaw cycle. There was a significant increase in the freezable water content, the largest modulus of elasticity, and the smallest tan δ. Therefore, the usage of the potato-oat composite dough should not exceed three cycles.

4.
J Hazard Mater ; 469: 133675, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38508109

ABSTRACT

When Cr(VI) and nitrate coexist, the efficiency of both bio-denitrification and Cr(VI) bio-reduction is poor because chromate hinders bacterial normal functions (i.e., electron production, transportation and consumption). Moreover, under anaerobic condition, the method about efficient nitrate and Cr(VI) removal remained unclear. In this paper, the addition of Shewanella oneidensis MR-1 to promote the electron production, transportation and consumption of denitrifier and cause an increase in the removal of nitrate and Cr(VI). The efficiency of nitrate and Cr(VI) removal accomplished by P. denitrificans as a used model denitrifier increased respectively from 51.3% to 96.1% and 34.3% to 99.8% after S. oneidensis MR-1 addition. The mechanism investigations revealed that P. denitrificans provided S. oneidensis MR-1 with lactate, which was utilized to secreted riboflavin and phenazine by S. oneidensis MR-1. The riboflavin served as coenzymes of cellular reductants (i.e., thioredoxin and glutathione) in P. denitrificans, which created favorable intracellular microenvironment conditions for electron generation. Meanwhile, phenazine promoted biofilm formation, which increased the adsorption of Cr(VI) on the cell surface and accelerated the Cr(VI) reduction by membrane bound chromate reductases thereby reducing damage to other enzymes respectively. Overall, this strategy reduced the negative effect of chromate, thus improved the generation, transportation, and consumption of electrons. SYNOPSIS: The presence of S. oneidensis MR-1 facilitated nitrate and Cr(VI) removal by P. denitrificans through decreasing the negative effect of chromate due to the metabolites' secretion.


Subject(s)
Nitrates , Shewanella , Nitrates/metabolism , Chromates/metabolism , Oxidation-Reduction , Electrons , Chromium/metabolism , Shewanella/metabolism , Phenazines , Riboflavin/metabolism
5.
Foods ; 13(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338523

ABSTRACT

In this study, terahertz time-domain spectroscopy (THz-TDS) was proposed to identify coffee of three different varieties and three different roasting degrees of one variety. Principal component analysis (PCA) was applied to extract features from frequency-domain spectral data, and the extracted features were used for classification prediction through linear discrimination (LD), support vector machine (SVM), naive Bayes (NB), and k-nearest neighbors (KNN). The classification effect and misclassification of the model were analyzed via confusion matrix. The coffee varieties, namely Catimor, Typica 1, and Typica 2, under the condition of shallow drying were used for comparative tests. The LD classification model combined with PCA had the best effect of dimension reduction classification, while the speed and accuracy reached 20 ms and 100%, respectively. The LD model was found with the highest speed (25 ms) and accuracy (100%) by comparing the classification results of Typica 1 for three different roasting degrees. The coffee bean quality detection method based on THz-TDS combined with a modeling analysis method had a higher accuracy, faster speed, and simpler operation, and it is expected to become an effective detection method in coffee identification.

6.
J Food Sci ; 89(3): 1387-1402, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38282373

ABSTRACT

The edible rose (Rosa Crimson Glory) petals were dried using infrared-assisted spouted bed drying technology. The effects of different drying temperature conditions (30, 35, 40, 45, and 50°C, as well as stepped heating drying [SHD] and stepped cooling drying) on the drying characteristics, physicochemical properties, antioxidant capacity, and changes in volatile flavor compounds of the rose petals were investigated. The results showed that the drying time was shortened with increasing drying temperature. Both variable temperature drying processes gave the shortest drying times. Optimal color retention of rose petals was achieved at a constant temperature of 40°C and SHD. Increased drying temperature resulted in higher water-soluble polysaccharide content in the dried rose petals, whereas lower temperatures facilitated anthocyanin preservation. The variable temperature drying processes favored the retention of water-soluble polysaccharides in rose petals, but not anthocyanins. Regarding antioxidant capacity, the samples dried at 40°C and those subjected to the two variable temperature drying processes performed better. This study also analyzed the differences in volatile flavor compounds of rose petals dried under different drying conditions. It was found that the majority of volatile flavor compounds in the rose petals dried by SHD exhibited higher content levels than the other drying conditions. Therefore, considering a thorough evaluation of all relevant factors, it was clear that utilizing the SHD process was the most efficient method for obtaining the best quality rose petals overall.


Subject(s)
Antioxidants , Rosa , Temperature , Antioxidants/chemistry , Rosa/chemistry , Desiccation/methods , Anthocyanins/chemistry , Water
7.
Int J Biol Macromol ; 260(Pt 1): 129448, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228204

ABSTRACT

The acquisition of high quality lyophilized IgY products, characterized by an aesthetically pleasing visage, heightened stability, and a marked preservation of activity, constitutes an indispensable pursuit in augmenting the safety and pragmatic utility of IgY. Within this context, an exploration was undertaken to investigate an innovative modality encompassing microwave freeze-drying (MFD) as a preparatory methodology of IgY. Morphological assessments revealed that both cryogenic freezing and subsequent MFD procedures resulted in aggregation of IgY, with the deleterious influence posed by the MFD phase transcending that of the freezing phase. The composite protective agent comprised of trehalose and mannitol engendered a safeguarding effect on the structural integrity of IgY, thereby attenuating reducing aggregation between IgY during the freeze-drying process. Enzyme-linked immunosorbent assay (ELISA) outcomes demonstrated a discernible correlation between IgY aggregation and a notable reduction in its binding affinity towards the pertinent antigen. Comparative analysis vis-à-vis the control sample delineated that when the trehalose-to-mannitol ratio was upheld at 1:3, a two-fold outcome was achieved: a mitigation of the collapse susceptibility within the final product as well as a deterrence of IgY agglomeration, concomitant with an elevated preservation rate of active antibodies (78.57 %).


Subject(s)
Immunoglobulins , Mannitol , Trehalose , Freezing , Trehalose/pharmacology , Trehalose/chemistry , Mannitol/chemistry , Freeze Drying/methods
8.
Neurosci Lett ; 823: 137649, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38262508

ABSTRACT

There is no converging evidence on how a word's semantic transparency affects morphemes' potential semantic activation. The inconsistent results may be due to the limitation of traditional univariate analyses, in which the semantic transparency was treated as discrete categories. In the current study, Chinese two-character words were used as stimuli and functional magnetic resonance imaging (fMRI) techniques were combined with a priming paradigm. Unlike most previous studies, the multivariate representation similarity analysis (RSA) was used to treat semantic transparency as a continuous variable. The RSA results showed that widespread regions in the frontal-parietal-temporal network represent the semantic perception of characters in all words and transparent words, but no brain areas were identified in opaque words. Unlike RSA results, univariate analyses showed no significant difference between the opaque and transparent words. These results suggest that RSA is more suitable to examine the neural mechanism related to continuous variables such as semantic transparency.


Subject(s)
Brain , Semantics , Brain/diagnostic imaging , Brain/physiology , Brain Mapping , Multivariate Analysis , Perception , Magnetic Resonance Imaging
9.
J Food Sci ; 89(2): 1012-1021, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38174800

ABSTRACT

Whey protein isolates (WPIs) were treated at 50, 60, 70, and 80°C to obtain thermally modified WPI. Gum arabic (GA) and thermal modification of WPI were used as novel wall materials to improve the quality of Cornus officinalis flavonoid (COF) microcapsules using microwave freeze-drying technique in this study. Results showed that all the thermal modification treatment decreased emulsifying activity index of WPI, whereas the solubility and emulsifying stability index (ESI) of WPI gradually increased with the increase of heating temperature. Compared to the untreated protein, the thermal modification treatment at 70°C increased the solubility and ESI of WPI by 14.91% ± 0.71% and 26.70% ± 0.94%, respectively. The microcapsules prepared with the modified protein at 60°C had the highest encapsulation efficiency (95.13% ± 2.36%), the lowest moisture content (1.42% ± 0.34%), and the highest solubility (84.41% ± 0.91). Scanning electron microscopy images showed that COF microcapsules were uniformly spherical, and the sizes of the microcapsules were in the following order: 12.42 ± 0.37 µm (80°C) > 11.7 ± 0.23 µm (untreated group) > 9.44 ± 0.33 µm (60°C) > 9.24 ± 0.14 µm (50°C) > 7.69 ± 0.29 µm (70°C). In the simulated in vitro digestion experiments, the release rate of COF microcapsules in the gastric digestion phase was less than that in the intestinal digestion phase, and it reached 66.46% at intestinal digestion phase. These results suggested that heated WPI and GA could be an effective nanocarrier to enhance the stability of COF.


Subject(s)
Cornus , Gum Arabic , Whey Proteins , Flavonoids , Capsules
10.
Acta Psychol (Amst) ; 243: 104132, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232507

ABSTRACT

Consecutive interpreting involves a demanding language task where mental workload (MWL) is crucial for assessing interpreters' performance. An elevated cognitive load in interpreters may lead to the interpretation failures. The widely used NASA-TLX questionnaire effectively measures MWL. However, a global score was employed in previous interpretation studies, overlooking the distinct contributions of MWL components to the interpreters' performance. Accordingly, we recruited twenty novice interpreters who were postgraduate students specializing in interpreting to complete the consecutive interpreting task. Throughout the process, we used functional near-infrared spectroscopy (fNIRS) to monitor the hemodynamic response in participants' brains. The NASA-TLX was used to measure the MWL during interpreting with six components, including mental demand, physical demand, temporal demand, performance, effort, and frustration. Five interpretation experts were invited to assess the interpretation quality. The Bayes factor approach was employed to explore the components that contributes the most to the interpretation quality. It indicated that mental demand strongly contributed to the interpretation quality. Moreover, the mediation analysis revealed a positive correlation between mental demand and brain activation in three brain areas, which, in turn, was negatively correlated with interpretation quality, indicating the predictive role of mental demand in interpretation quality through the mediating of brain activation. The functions of the mediating brain areas, including the inferior frontal gyrus, middle temporal gyrus, and inferior temporal gyrus, aligned with the three efforts proposed by Gile's effort model, which emphasizes the significance of three fundamental efforts in achieving successful interpreting. These findings have implications for interpreter learning and training.


Subject(s)
Task Performance and Analysis , Workload , Humans , Bayes Theorem , Workload/psychology , Language , Brain
11.
J Sci Food Agric ; 104(6): 3206-3215, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38072792

ABSTRACT

BACKGROUND: The current study introduces a novel infrared-assisted spouted bed drying technique for the dehydration of green soybeans, which aims to enhance the drying quality and efficiency. The investigation involves an examination of the flow pattern in the spouted bed to obtain relevant data, followed by an optimization of the entire drying process. The drying process of green soybeans was simulated using SolidWorks and ANSYS Fluent software, based on the principles of computational fluid dynamics. RESULTS: The simulation test results showed that the simulation outcomes were consistent with the experimental data. The optimal conditions for the process of green soybean infrared-assisted spouted bed drying were found to be an inlet speed of 8 m/s and a temperature of 50 °C with the wavelength and power settings of the infrared board at 10 µm and 500 W, respectively. CONCLUSION: The simulation method selected in this article, based on gas-solid two-phase flow dynamics, is feasible for green soybean infrared-assisted spouted bed drying process. © 2023 Society of Chemical Industry.


Subject(s)
Desiccation , Glycine max , Desiccation/methods , Temperature
12.
Foods ; 12(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38137253

ABSTRACT

This study aimed to investigate the effects of the covalent binding of flaxseed protein (FP) and chlorogenic acid (CA) on the structure and functional properties of FP-CA complexes fabricated using the alkali method. The results suggested that the encapsulation efficiency of CA encapsulated by FP ranged from 66.11% to 72.20% and the loading capacity of CA increased with an increasing addition ratio of CA with a dose-dependent relationship, which increased from 2.34% to 10.19%. The particle size, turbidity, zeta potential and PDI of FP and the FP-CA complexes had no significant discrepancy. UV-Vis and fluorescence spectra showed the existence of the interaction between FP and CA. SEM images showed that the surface of the FP-0.35%CA complex had more wrinkles compared to FP. Differential scanning calorimetry analysis indicated the decomposition temperature of FP at 198 °C was higher than that (197 °C) of the FP-0.35%CA complex, implying that the stability of the FP-CA complexes was lower than FP. The functional properties suggested that the FP-CA complex with 1.40% CA had a higher water holding capacity (500.81%), lower oil holding capacity (273.495%) and lower surface hydrophobicity. Moreover, the FP-CA complexes had better antioxidant activities than that of FP. Therefore, this study provides more insights for the potential application of FP-CA covalent complexes in functional food processing.

13.
Molecules ; 28(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38138559

ABSTRACT

Lactobacillus plantarum is a kind of probiotic that benefits the host by regulating the gut microbiota, but it is easily damaged when passing through the gastrointestinal tract, hindering its ability to reach the destination and reducing its utilization value. Encapsulation is a promising strategy for solving this problem. In this study, transglutaminase (TGase)-crosslinked gelatin (GE)/sodium hexametaphosphate (SHMP) hydrogels were used to encapsulate L. plantarum. The effects of TGase concentration and drying method on the physiochemical properties of the hydrogels were determined. The results showed that at a TGase concentration of 9 U/gGE, the hardness, chewiness, energy storage modulus, and apparent viscosity of the hydrogel encapsulation system were maximized. This concentration produced more high-energy isopeptide bonds, strengthening the interactions between molecules, forming a more stable three-dimensional network structure. The survival rate under the simulated gastrointestinal conditions and storage stability of L. plantarum were improved at this concentration. The thermal stability of the encapsulation system dried via microwave vacuum freeze drying (MFD) was slightly higher than that when dried via freeze drying (FD). The gel structure was more stable, and the activity of L. plantarum decreased more slowly during the storage period when dried using MFD. This research provides a theoretical basis for the development of encapsulation technology of probiotics.


Subject(s)
Lactobacillus plantarum , Probiotics , Gelatin/pharmacology , Microbial Viability , Transglutaminases/pharmacology , Hydrogels/pharmacology , Freeze Drying , Probiotics/chemistry
14.
Sheng Li Xue Bao ; 75(5): 703-713, 2023 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-37909141

ABSTRACT

Hyperhomocysteinemia (HHcy) is considered to be an independent risk factor for cardiovascular diseases, but the molecular mechanisms underlying its pathogenesis are not fully understood. Endothelial dysfunction is a key initiating factor in the pathogenesis of atherosclerosis, which is commonly observed in almost all HHcy-induced vascular diseases. HHcy promotes oxidative stress, inhibits nitric oxide production, suppresses hydrogen sulfide signaling pathway, promotes endothelial mesenchymal transition, activates coagulation pathways, and promotes protein N-homocysteination and cellular hypomethylation, all of which can cause endothelial dysfunction. This article reviews the specific links between HHcy and endothelial dysfunction, and highlights recent evidence that endothelial mesenchymal transition contributes to HHcy-induced vascular damage, with a hope to provide new ideas for the clinical treatment of HHcy-related vascular diseases.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Hyperhomocysteinemia , Humans , Endothelium, Vascular , Homocysteine/metabolism , Hyperhomocysteinemia/complications , Oxidative Stress , Risk Factors
15.
ACS Omega ; 8(44): 41844-41854, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37970015

ABSTRACT

Lactoferrin (LF) from bovine milk possesses antioxidant activity, immune regulatory and other biological activities. However, the effects of epicatechin (EC) and epigallocatechin (EGC) interacting with LF on the antioxidant activity of LF have not been investigated. Therefore, this study aimed to explore their interaction mechanism and the antioxidant activity of LF. UV spectra revealed that EGC (100 µM) induced a higher blue shift of LF at the maximum absorption wavelength than that of EC (100 µM). Fluorescence spectra results suggested that LF fluorescence was quenched by EC and EGC in the static type, which changed the polarity of the microenvironment around LF. The quenching constants Ksv (5.91 × 103-9.20 × 103) of EC-LF complexes at different temperatures were all higher than that (1.35 × 103-1.75 × 103) of the EGC-LF complex. EC could bind to LF via hydrophobic interactions while hydrogen bonding and van der Waals forces drove the binding of EGC to LF. Both the EC-LF complex and EGC-LF complex could bind to LF with one site. EGC formed more hydrogen bonds with LF than that of EC. The antioxidant activity of LF was increased by the high addition level of EC and EGC. These findings would provide more references for developing LF-catechin complexes as functional antioxidants.

16.
Clin Exp Optom ; : 1-5, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37918111

ABSTRACT

CLINICAL RELEVANCE: The association between myopia and body stature is of great significance for understanding prevention and control of myopia. It has been extensively studied in previous studies but without consistent conclusions. BACKGROUND: The aim of this study is to investigate the association between body stature and prevalence of reduced visual acuity in high school graduates in Hangzhou, China. METHODS: 50,620 high school graduates who finished the physical examination of the national college entrance examination in 2020 were included. Data were derived from the database of physical examination of the national college entrance examination. Height and weight were measured, and body mass index (BMI) was calculated according to the general formula. Visual acuity was measured by the standard logarithmic visual acuity chart. RESULTS: The prevalence of reduced visual acuity was 90.38% in high school graduates. Girls had a higher prevalence of reduced visual acuity than boys (93.07% vs 87.60%, P < 0.001). Boys with normal visual acuity were significantly taller (P < 0.001) and heavier (P < 0.001) than those with reduced visual acuity. Girls with normal visual acuity were significantly taller than those with reduced visual acuity (P < 0.001). The prevalence of reduced visual acuity was significantly inversely associated with height in both boys (P < 0.001) and girls (P < 0.001). The risk of reduced visual acuity was the lowest in the fourth quartile of height. The prevalence of reduced visual acuity was significantly associated with BMI only in boys (P < 0.001). The risk of reduced visual acuity was the lowest in the third quartile of BMI. CONCLUSIONS: The prevalence of reduced visual acuity was inversely associated with height in both boys and girls, and there was a U-shaped association with BMI only in boys.

17.
Front Endocrinol (Lausanne) ; 14: 1228892, 2023.
Article in English | MEDLINE | ID: mdl-37859989

ABSTRACT

Background: Positive surgical margin (PSM) or apical positive surgical margin (APSM) is an established predictive factor of biochemical recurrence or disease progression in prostate cancer (PCa) patients after radical prostatectomy. Since there are limited usable magnetic resonance imaging (MRI)-based models, we sought to explore the role of three-dimensional (3D) visualization for preoperative MRI in the prediction of PSM or APSM. Methods: From December 2016 to April 2022, 149 consecutive PCa patients who underwent radical prostatectomy were retrospectively selected from the Second Affiliated Hospital of Dalian Medical University. According to the presence of PSM or APSM, patients were divided into a PSM group (n=41) and a without PSM group (n=108) and into an APSM group (n=33) and a without APSM group (n=116). Twenty-one parameters, including prostate apical shape, PCa distance to the membranous urethra, and pubic angle, were measured on 3D visualization of MRI. The development of the nomogram models was built by the findings of multivariate logistic regression analysis for significant factors. Results: To predict the probability of PSM, a longer PCa distance to the membranous urethra (OR=0.136, p=0.019) and the distance from the anterior peritoneum to the anterior border of the coccyx (work space AP, OR=0.240, p=0.030) were independent protective factors, while a type 3 prostate apical shape (OR=8.262, p=0.025) and larger pubic angle 2 (OR=5.303, p=0.029) were identified as independent risk factors. The nomogram model presented an area under the curve (AUC) of the receiver operating characteristic curve (ROC) of PSM of 0.777. In evaluating the incidence of APSM, we found that the distance to the membranous urethra (OR=0.135, p=0.014) was associated with a low risk of APSM, while larger pubic angle 1 (OR=4.666, p=0.043) was connected to a higher risk of APSM. The nomogram model showed that the AUC of APSM was 0.755. Conclusion: As 3D visualization for preoperative MRI showed good performance in predicting PSM or APSM, the tool might be potentially valuable, which also needs to be validated by multicenter, large-scale, prospective studies.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/diagnostic imaging , Prostate/surgery , Prostate/pathology , Imaging, Three-Dimensional , Margins of Excision , Retrospective Studies , Prospective Studies , Prostatectomy/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology , Risk Factors , Magnetic Resonance Imaging
18.
Article in English | MEDLINE | ID: mdl-37673470

ABSTRACT

OBJECTIVE: Our study examines how non-small cell lung cancer (NSCLC) survivors undergoing immunotherapy can experience reduced anxiety and psychological distress, improved quality of life (QOL) and increased immunotherapy efficacy. METHODS: 133 men and 20 women with NSCLCs were enrolled. In a randomised controlled trial involving a care as usual group (CG) and a music therapy group (MTG), the researchers employed various tools such as the Self-Rating Anxiety Scale, Symptom Distress Thermometer, Functional Assessment of Cancer Therapy-General version 4 and Response Evaluation Criteria in Solid Tumours. These measures were used to evaluate anxiety, psychological distress, QOL and immunotherapy efficacy in patients undergoing immunotherapy before and after patients' completion. RESULTS: After the intervention, patients in the MTG demonstrated a noteworthy reduction in anxiety (t=6.272, p≤0.001) and distress (t=10.111, p≤0.001), as well as an increase in QOL (t=-7.649, p≤0.001). Moreover, compared with patients in the CG, those in the MTG demonstrated a remarkable drop in anxiety (t=-4.72, p≤0.001) and distress (t=-7.29, p≤0.001), a significant increase in QOL (t=5.363, p≤0.001) and a significant improvement in immunotherapy efficacy (z=-2.18, p≤0.05) after the intervention. CONCLUSIONS: The use of individual music therapy sessions appears to be effective in reducing anxiety and distress, while also increasing QOL and immunotherapy efficacy in patients with NSCLCs undergoing immunotherapy.

19.
Sci Total Environ ; 905: 167141, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37739072

ABSTRACT

Microbial electrolysis cell (MEC) is a promising in-situ strategy for chlorinated organic compound (COC) pollution remediation due to its high efficiency, low energy input, and long-term potential. Reductive dechlorination as the most critical step in COC degradation which takes place primarily in the cathode chamber of MECs is a complex biochemical process driven by the behavior of electrons. However, no information is currently available on the internal mechanism of MEC in dechlorination from the perspective of the whole electron transfer procedure and its dependent electrode materials. This review addresses the underlying mechanism of MEC on the fundamental of the generation (electron donor), transmission (transfer pathway), utilization (functional microbiota) and reception (electron acceptor) of electrons in dechlorination. In addition, the vital role of varied cathode materials involved in the entire electron transfer procedure during COC dechlorination is emphasized. Subsequently, suggestions for future research, including model construction, cathode material modification, and expanding the applicability of MECs to removal gaseous COCs have been proposed. This paper enriches the mechanism of COC degradation by MEC, and thus provides the theoretical support for the scale-up bioreactors for efficient COC removal.


Subject(s)
Electrolysis , Environmental Restoration and Remediation , Electrodes , Gases
20.
Plants (Basel) ; 12(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37570947

ABSTRACT

Wheat has a large and diverse repertoire of NLRs involved in disease resistance, with over 1500 NLRs detected in some studies. These NLR genes occur as singletons or clusters containing copies of NLRs from different phylogenetic clades. The number of NLRs and cluster size can differ drastically among ecotypes and cultivars. Primarily, duplication has led to the evolution and diversification of NLR genes. Among the various mechanisms, whole genome duplication (WGD) is the most intense and leading cause, contributing to the complex evolutionary history and abundant gene set of hexaploid wheat. Tandem duplication or recombination is another major mechanism of NLR gene expansion in wheat. The diversity and divergence of duplicate NLR genes are responsible for the broad-spectrum resistance of most plant species with limited R genes. Understanding the mechanisms underlying the rapid evolution and diversification of wheat NLR genes will help improve disease resistance in crops. The present review focuses on the diversity and divergence of duplicate NLR genes and their contribution to wheat disease resistance. Moreover, we provide an overview of disease resistance-associated gene duplication and the underlying strategies in wheat.

SELECTION OF CITATIONS
SEARCH DETAIL
...