Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ Comput Sci ; 9: e1262, 2023.
Article in English | MEDLINE | ID: mdl-37346717

ABSTRACT

The accuracy of fish farming and real-time monitoring are essential to the development of "intelligent" fish farming. Although the existing instance segmentation networks (such as Maskrcnn) can detect and segment the fish, most of them are not effective in real-time monitoring. In order to improve the accuracy of fish image segmentation and promote the accurate and intelligent development of fish farming industry, this article uses YOLOv5 as the backbone network and object detection branch, combined with semantic segmentation head for real-time fish detection and segmentation. The experiments show that the object detection precision can reach 95.4% and the semantic segmentation accuracy can reach 98.5% with the algorithm structure proposed in this article, based on the golden crucian carp dataset, and 116.6 FPS can be achieved on RTX3060. On the publicly available dataset PASCAL VOC 2007, the object detection precision is 73.8%, the semantic segmentation accuracy is 84.3%, and the speed is up to 120 FPS on RTX3060.

2.
Math Biosci Eng ; 20(1): 1488-1504, 2023 01.
Article in English | MEDLINE | ID: mdl-36650820

ABSTRACT

The automatic text summarization task faces great challenges. The main issue in the area is to identify the most informative segments in the input text. Establishing an effective evaluation mechanism has also been identified as a major challenge in the area. Currently, the mainstream solution is to use deep learning for training. However, a serious exposure bias in training prevents them from achieving better results. Therefore, this paper introduces an extractive text summarization model based on a graph matrix and advantage actor-critic (GA2C) method. The articles were pre-processed to generate a graph matrix. Based on the states provided by the graph matrix, the decision-making network made decisions and sent the results to the evaluation network for scoring. The evaluation network got the decision results of the decision-making network and then scored them. The decision-making network modified the probability of the action based on the scores of the evaluation network. Specifically, compared with the baseline reinforcement learning-based extractive summarization (Refresh) model, experimental results on the CNN/Daily Mail dataset showed that the GA2C model led on Rouge-1, Rouge-2 and Rouge-A by 0.70, 9.01 and 2.73, respectively. Moreover, we conducted multiple ablation experiments to verify the GA2C model from different perspectives. Different activation functions and evaluation networks were used in the GA2C model to obtain the best activation function and evaluation network. Two different reward functions (Set fixed reward value for accumulation (ADD), Rouge) and two different similarity matrices (cosine, Jaccard) were combined for the experiments.


Subject(s)
Probability
3.
Animals (Basel) ; 12(19)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36230394

ABSTRACT

With the rapid development of computer vision, the application of computer vision to precision farming in animal husbandry is currently a hot research topic. Due to the scale of goose breeding continuing to expand, there are higher requirements for the efficiency of goose farming. To achieve precision animal husbandry and to avoid human influence on breeding, real-time automated monitoring methods have been used in this area. To be specific, on the basis of instance segmentation, the activities of individual geese are accurately detected, counted, and analyzed, which is effective for achieving traceability of the condition of the flock and reducing breeding costs. We trained QueryPNet, an advanced model, which could effectively perform segmentation and extraction of geese flock. Meanwhile, we proposed a novel neck module that improved the feature pyramid structure, making feature fusion more effective for both target detection and instance individual segmentation. At the same time, the number of model parameters was reduced by a rational design. This solution was tested on 639 datasets collected and labeled on specially created free-range goose farms. With the occlusion of vegetation and litters, the accuracies of the target detection and instance segmentation reached 0.963 (mAP@0.5) and 0.963 (mAP@0.5), respectively.

4.
Article in English | MEDLINE | ID: mdl-36294096

ABSTRACT

Nowadays, tourists increasingly prefer to check the reviews of attractions before traveling to decide whether to visit them or not. To respond to the change in the way tourists choose attractions, it is important to classify the reviews of attractions with high precision. In addition, more and more tourists like to use emojis to express their satisfaction or dissatisfaction with the attractions. In this paper, we built a dataset for Chinese attraction evaluation incorporating emojis (CAEIE) and proposed an explicitly n-gram masking method to enhance the integration of coarse-grained information into a pre-training (ERNIE-Gram) and Text Graph Convolutional Network (textGCN) (E2G) model to classify the dataset with a high accuracy. The E2G preprocesses the text and feeds it to ERNIE-Gram and TextGCN. ERNIE-Gram was trained using its unique mask mechanism to obtain the final probabilities. TextGCN used the dataset to construct heterogeneous graphs with comment text and words, which were trained to obtain a representation of the document output category probabilities. The two probabilities were calculated to obtain the final results. To demonstrate the validity of the E2G model, this paper was compared with advanced models. After experiments, it was shown that E2G had a good classification effect on the CAEIE dataset, and the accuracy of classification was up to 97.37%. Furthermore, the accuracy of E2G was 1.37% and 1.35% ahead of ERNIE-Gram and TextGCN, respectively. In addition, two sets of comparison experiments were conducted to verify the performance of TextGCN and TextGAT on the CAEIE dataset. The final results showed that ERNIE and ERNIE-Gram combined TextGCN and TextGAT, respectively, and TextGCN performed 1.6% and 2.15% ahead. This paper compared the effects of eight activation functions on the second layer of the TextGCN and the activation-function-rectified linear unit 6 (RELU6) with the best results based on experiments.


Subject(s)
Sentiment Analysis , Tourism , Data Collection , China
5.
Animals (Basel) ; 12(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35565603

ABSTRACT

The sex ratio is an important factor affecting the economic benefits of duck groups in the process of hemp duck breeding. However, the current manual counting method is inefficient, and the results are not always accurate. On the one hand, ducks are in constant motion, and on the other hand, the manual counting method relies on manpower; thus, it is difficult to avoid repeated and missed counts. In response to these problems, there is an urgent need for an efficient and accurate way of calculating the sex ratio of ducks to promote the farming industry. Detecting the sex ratio of ducks requires accurate counting of male ducks and female ducks. We established the world's first manually marked sex classification dataset for hemp ducks, including 1663 images of duck groups; 17,090 images of whole, individual duck bodies; and 15,797 images of individual duck heads, which were manually captured and had sex information markers. Additionally, we used multiple deep neural network models for the target detection and sex classification of ducks. The average accuracy reached 98.68%, and with the combination of Yolov5 and VovNet_27slim, we achieved 99.29% accuracy, 98.60% F1 score, and 269.68 fps. The evaluation of the algorithm's performance indicates that the automation method proposed in this paper is feasible for the sex classification of ducks in the farm environment, and is thus a feasible tool for sex ratio estimation.

6.
Front Bioeng Biotechnol ; 9: 696251, 2021.
Article in English | MEDLINE | ID: mdl-34336808

ABSTRACT

Colonoscopy is currently one of the main methods for the detection of rectal polyps, rectal cancer, and other diseases. With the rapid development of computer vision, deep learning-based semantic segmentation methods can be applied to the detection of medical lesions. However, it is challenging for current methods to detect polyps with high accuracy and real-time performance. To solve this problem, we propose a multi-branch feature fusion network (MBFFNet), which is an accurate real-time segmentation method for detecting colonoscopy. First, we use UNet as the basis of our model architecture and adopt stepwise sampling with channel multiplication to integrate features, which decreases the number of flops caused by stacking channels in UNet. Second, to improve model accuracy, we extract features from multiple layers and resize feature maps to the same size in different ways, such as up-sampling and pooling, to supplement information lost in multiplication-based up-sampling. Based on mIOU and Dice loss with cross entropy (CE), we conduct experiments in both CPU and GPU environments to verify the effectiveness of our model. The experimental results show that our proposed MBFFNet is superior to the selected baselines in terms of accuracy, model size, and flops. mIOU, F score, and Dice loss with CE reached 0.8952, 0.9450, and 0.1602, respectively, which were better than those of UNet, UNet++, and other networks. Compared with UNet, the flop count decreased by 73.2%, and the number of participants also decreased. The actual segmentation effect of MBFFNet is only lower than that of PraNet, the number of parameters is 78.27% of that of PraNet, and the flop count is 0.23% that of PraNet. In addition, experiments on other types of medical tasks show that MBFFNet has good potential for general application in medical image segmentation.

7.
PeerJ Comput Sci ; 7: e579, 2021.
Article in English | MEDLINE | ID: mdl-34151000

ABSTRACT

Credit scoring is a very critical task for banks and other financial institutions, and it has become an important evaluation metric to distinguish potential defaulting users. In this paper, we propose a credit score prediction method based on feature transformation and ensemble model, which is essentially a cascade approach. The feature transformation process consisting of boosting trees (BT) and auto-encoders (AE) is employed to replace manual feature engineering and to solve the data imbalance problem. For the classification process, this paper designs a heterogeneous ensemble model by weighting the factorization machine (FM) and deep neural networks (DNN), which can efficiently extract low-order intersections and high-order intersections. Comprehensive experiments were conducted on two standard datasets and the results demonstrate that the proposed approach outperforms existing credit scoring models in accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...