Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Cell Biol Toxicol ; 40(1): 23, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630355

ABSTRACT

Cytosolic thiouridylase 2 (CTU2) is an enzyme modifying transfer RNAs post-transcriptionally, which has been implicated in breast cancer and melanoma development. And we found CTU2 participated in hepatocellular carcinoma (HCC) progression here. HepG2 cells as well as xenograft nude mice model were employed to investigate the role of CTU2 in HCC development in vitro and in vivo respectively. Further, we defined CTU2 as a Liver X receptor (LXR) targeted gene, with a typical LXR element in the CTU2 promoter. CTU2 expression was activated by LXR agonist and depressed by LXR knockout. Interestingly, we also found CTU2 took part in lipogenesis by directly enhancing the synthesis of lipogenic proteins, which provided a novel mechanism for LXR regulating lipid synthesis. Meanwhile, lipogenesis was active during cell proliferation, particularly in tumor cells. Reduction of CTU2 expression was related to reduced tumor burden and synergized anti-tumor effect of LXR ligands by inducing tumor cell apoptosis and inhibiting cell proliferation. Taken together, our study identified CTU2 as an LXR target gene. Inhibition of CTU2 expression could enhance the anti-tumor effect of LXR ligand in HCC, identifying CTU2 as a promising target for HCC treatment and providing a novel strategy for the application of LXR agonists in anti-tumor effect.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Liver X Receptors , Animals , Female , Humans , Mice , Breast Neoplasms , Carcinoma, Hepatocellular/genetics , Disease Models, Animal , Liver Neoplasms/genetics , Liver X Receptors/genetics , Mice, Nude
2.
Phytomedicine ; 129: 155618, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678949

ABSTRACT

BACKGROUND: Vascular calcification refers to the abnormal accumulation of calcium in the walls of blood vessels and is a risk factor often overlooked in cardiovascular disease. However, there is currently no specific drug for treating vascular calcification. Compound Danshen Dripping Pill (CDDP) is widely used to treat cardiovascular diseases, but its effect on vascular calcification has not been reported. PURPOSE: We investigated the effects of CDDP on vascular calcification in ApoE-/- mice and in vitro and elucidated its mechanism of action. STUDY DESIGN: Firstly, we found that CDDP has the potential to improve calcification based on network pharmacology analysis. Then, we performed the following experiments: in vivo, ApoE-/- mice were fed a high-fat diet randomly supplemented with CDDP for 16 weeks. Atherosclerosis and vascular calcification were determined. In vitro, human aortic smooth muscle cells (HASMCs), human umbilical vein endothelial cells (HUVECs), and human aortic endothelial cells (HAECs) were used to determine the mechanisms for CDDP-inhibited vascular calcification. RESULTS: In this study, we observed that CDDP reduced intimal calcification in atherosclerotic lesions of ApoE-deficient mice fed a high-fat diet, as well as the calcification in cultured SMCs and ECs. Mechanistically, CDDP inhibited the Wnt/ß-catenin pathway by up-regulating the expression of DKK1 and LRP6, which are upstream inhibitors of Wnt, leading to a reduction in the expression of osteoblastic transition markers (ALP, OPN, BMP2, and RUNX2). Furthermore, CDDP enhanced the secretion of DKK1, which plays a role in mediating EC-SMC crosstalk in calcification. Additionally, VC contributes to vascular aging by inhibiting Sirt1 and increasing senescence parameters (SA-ß-gal, p21, and p16). However, CDDP reversed these changes by activating Sirt1. CDDP also reduced the levels of pro-inflammatory cytokines and the senescence-associated secretory phenotype in vivo and in vitro. CONCLUSIONS: Our study suggests that CDDP reduces vascular calcification by regulating the DKK1/LRP6/ß-catenin signaling pathway in ECs/SMCs and interactions with the crosstalk of ECs and SMCs. It also reduces the senescence of ECs/SMCs, contributing to the Sirt1 activation, indicating CDDP's novel role in ameliorating vascular calcification.


Subject(s)
Atherosclerosis , Diet, High-Fat , Drugs, Chinese Herbal , Human Umbilical Vein Endothelial Cells , Salvia miltiorrhiza , Vascular Calcification , Animals , Vascular Calcification/drug therapy , Humans , Drugs, Chinese Herbal/pharmacology , Salvia miltiorrhiza/chemistry , Male , Diet, High-Fat/adverse effects , Atherosclerosis/drug therapy , Mice , Human Umbilical Vein Endothelial Cells/drug effects , Sirtuin 1/metabolism , Mice, Inbred C57BL , Myocytes, Smooth Muscle/drug effects , Apolipoproteins E/genetics , Network Pharmacology , Wnt Signaling Pathway/drug effects , Aorta/drug effects , Camphanes , Intercellular Signaling Peptides and Proteins , Panax notoginseng
3.
J Adv Res ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38432393

ABSTRACT

INTRODUCTION: Vascular calcification, a devastating vascular complication accompanying atherosclerotic cardiovascular disease and chronic kidney disease, increases the incidence of adverse cardiovascular events and compromises the efficacy of vascular interventions. However, effective therapeutic drugs and treatments to delay or prevent vascular calcification are lacking. OBJECTIVES: This study was designed to test the therapeutic effects and mechanism of Moscatilin (also known as dendrophenol) from Dendrobium huoshanense (an eminent traditional Chinese medicine) in suppressing vascular calcification in vitro, ex vivo and in vivo. METHODS: Male C57BL/6J mice (25-week-old) were subjected to nicotine and vitamin D3 (VD3) treatment to induce vascular calcification. In vitro, we established the cellular model of osteogenesis of human aortic smooth muscle cells (HASMCs) under phosphate conditions. RESULTS: By utilizing an in-house drug screening strategy, we identified Moscatilin as a new naturally-occurring chemical entity to reduce HASMC calcium accumulation. The protective effects of Moscatilin against vascular calcification were verified in cultured HASMCs. Unbiased transcriptional profiling analysis and cellular thermal shift assay suggested that Moscatilin suppresses vascular calcification via binding to interleukin 13 receptor subunit A2 (IL13RA2) and augmenting its expression. Furthermore, IL13RA2 was reduced during HASMC osteogenesis, thus promoting the secretion of inflammatory factors via STAT3. We further validated the participation of Moscatilin-inhibited vascular calcification by the classical WNT/ß-catenin pathway, among which WNT3 played a key role in this process. Moscatilin mitigated the crosstalk between WNT3/ß-catenin and IL13RA2/STAT3 to reduce osteogenic differentiation of HASMCs. CONCLUSION: This study supports the potential of Moscatilin as a new naturally-occurring candidate drug for treating vascular calcification via regulating the IL13RA2/STAT3 and WNT3/ß-catenin signalling pathways.

4.
Cell Rep ; 43(4): 114003, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38527062

ABSTRACT

The major histocompatibility complex class I (MHC class I)-mediated tumor antigen processing and presentation (APP) pathway is essential for the recruitment and activation of cytotoxic CD8+ T lymphocytes (CD8+ CTLs). However, this pathway is frequently dysregulated in many cancers, thus leading to a failure of immunotherapy. Here, we report that activation of the tumor-intrinsic Hippo pathway positively correlates with the expression of MHC class I APP genes and the abundance of CD8+ CTLs in mouse tumors and patients. Blocking the Hippo pathway effector Yes-associated protein/transcriptional enhanced associate domain (YAP/TEAD) potently improves antitumor immunity. Mechanistically, the YAP/TEAD complex cooperates with the nucleosome remodeling and deacetylase complex to repress NLRC5 transcription. The upregulation of NLRC5 by YAP/TEAD depletion or pharmacological inhibition increases the expression of MHC class I APP genes and enhances CD8+ CTL-mediated killing of cancer cells. Collectively, our results suggest a crucial tumor-promoting function of YAP depending on NLRC5 to impair the MHC class I APP pathway and provide a rationale for inhibiting YAP activity in immunotherapy for cancer.


Subject(s)
Antigen Presentation , Hippo Signaling Pathway , Histocompatibility Antigens Class I , Protein Serine-Threonine Kinases , Signal Transduction , Animals , Antigen Presentation/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Humans , Mice , Protein Serine-Threonine Kinases/metabolism , YAP-Signaling Proteins/metabolism , Cell Line, Tumor , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/metabolism , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , T-Lymphocytes, Cytotoxic/immunology , Transcription Factors/metabolism
5.
EMBO Rep ; 25(4): 2097-2117, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38532128

ABSTRACT

High fructose intake during pregnancy increases insulin resistance (IR) and gestational diabetes mellitus (GDM) risk. IR during pregnancy primarily results from elevated hormone levels. We aim to determine the role of liver carbohydrate response element binding protein (ChREBP) in insulin sensitivity and lipid metabolism in pregnant mice and their offspring. Pregnant C57BL/6J wild-type mice and hepatocyte-specific ChREBP-deficient mice were fed with a high-fructose diet (HFrD) or normal chow diet (NC) pre-delivery. We found that the combination of HFrD with pregnancy excessively activates hepatic ChREBP, stimulating progesterone synthesis by increasing MTTP expression, which exacerbates IR. Increased progesterone levels upregulated hepatic ChREBP via the progesterone-PPARγ axis. Placental progesterone activated the progesterone-ChREBP loop in female offspring, contributing to IR and lipid accumulation. In normal dietary conditions, hepatic ChREBP modestly affected progesterone production and influenced IR during pregnancy. Our findings reveal the role of hepatic ChREBP in regulating insulin sensitivity and lipid homeostasis in both pregnant mice consuming an HFrD and female offspring, and suggest it as a potential target for managing gestational metabolic disorders, including GDM.


Subject(s)
Insulin Resistance , Pregnancy , Female , Mice , Animals , Insulin Resistance/genetics , Fructose/adverse effects , Fructose/metabolism , Progesterone/metabolism , Mice, Inbred C57BL , Placenta/metabolism , Liver/metabolism , Lipids , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
6.
Cell Biol Toxicol ; 40(1): 10, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38319449

ABSTRACT

Lung cancer is the most common cause of cancer-related deaths worldwide and is caused by multiple factors, including high-fat diet (HFD). CD36, a fatty acid receptor, is closely associated with metabolism-related diseases, including cardiovascular disease and cancer. However, the role of CD36 in HFD-accelerated non-small-cell lung cancer (NSCLC) is unclear. In vivo, we fed C57BL/6J wild-type (WT) and CD36 knockout (CD36-/-) mice normal chow or HFD in the presence or absence of pitavastatin 2 weeks before subcutaneous injection of LLC1 cells. In vitro, A549 and NCI-H520 cells were treated with free fatty acids (FFAs) to mimic HFD situation for exploration the underlying mechanisms. We found that HFD promoted LLC1 tumor growth in vivo and that FFAs increased cell proliferation and migration in A549 and NCI-H520 cells. The enhanced cell or tumor growth was inhibited by the lipid-lowering agent pitavastatin, which reduced lipid accumulation. More importantly, we found that plasma soluble CD36 (sCD36) levels were higher in NSCLC patients than those in healthy ones. Compared to that in WT mice, the proliferation of LLC1 cells in CD36-/- mice was largely suppressed, which was further repressed by pitavastatin in HFD group. At the molecular level, we found that CD36 inhibition, either with pitavastatin or plasmid, reduced proliferation- and migration-related protein expression through the AKT/mTOR pathway. Taken together, we demonstrate that inhibition of CD36 expression by pitavastatin or other inhibitors may be a viable strategy for NSCLC treatment.


Subject(s)
CD36 Antigens , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Fatty Acids , Lung Neoplasms/drug therapy , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt , CD36 Antigens/genetics
8.
Int Immunopharmacol ; 125(Pt B): 111198, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37952482

ABSTRACT

Vascular calcification is an independent risk factor for cardiovascular disease. However, there is still a lack of adequate treatment. This study aimed to examine the potential of (E)-1-(5-(2-(4-fluorobenzyloxy)Styryl)-4,6-dimethoxyphenyl)-3-methyl-4,5-dihydro-1H-pyrazole-1-yl) ethyl ketone (Ptd-1) to alleviate vascular calcification. ApoE-deficient mice were fed a high-fat diet for 12/16 weeks to induce intimal calcification, and wild-type mice were induced with a combination of nicotine and vitamin D3 to induce medial calcification. Human aortic smooth muscle cells (HASMCs) and aortic osteogenic differentiation were induced in vitro with phosphate. In the mouse model of atherosclerosis, Ptd-1 significantly ameliorated the progression of atherosclerosis and intimal calcification, and there were significant reductions in lipid deposition and calcium salt deposition in the aorta and aortic root. In addition, Ptd-1 significantly improved medial calcification in vivo and osteogenic differentiation in vitro. Mechanistically, Ptd-1 reduced the levels of the inflammatory factors IL-1ß, TNFα and IL-6 in vivo and in vitro. Furthermore, we demonstrated that Ptd-1 could attenuate the expression of p-ERK1/2 and ß-catenin, and that the levels of inflammatory factors were elevated in the presence of ERK1/2 and ß-catenin agonists. Interestingly, we determined that activation of the ERK1/2 pathway promoted ß-catenin expression, which further regulated the IL-6/STAT3 signaling pathway. Ptd-1 blocked ERK1/2 signaling, leading to decreased expression of inflammatory factors, which in turn improved vascular calcification. Taken together, our study reveals that Ptd-1 ameliorates vascular calcification by regulating the production of inflammatory factors, providing new ideas for the treatment of vascular calcification.


Subject(s)
Atherosclerosis , Vascular Calcification , Humans , Animals , Mice , beta Catenin , Interleukin-6 , Osteogenesis , Vascular Calcification/drug therapy , Inflammation/drug therapy , Atherosclerosis/drug therapy
9.
PeerJ ; 11: e16313, 2023.
Article in English | MEDLINE | ID: mdl-37953784

ABSTRACT

Background: Prostate cancer is the most common malignancy in men, and its incidence is increasing year by year. Some studies have shown that risk factors for prostate cancer are related to insulin resistance. The triglyceride-glucose (TyG) index is a marker of insulin resistance. We investigated the validity of TyG index for predicting prostate cancer and the dose-response relationship in prostate cancer in relation to it. Objective: To investigate the risk factors of TyG index and prostate cancer prevalence. Methods: This study was screened from the First Affiliated Hospital of Xinjiang Medical University and included 767 people, including 136 prostate cancer patients in the case group and 631 healthy people in the control group. The relationship between TyG index and the risk of prostate cancer was analyzed by one-way logistic regression, adjusted for relevant factors, and multi-factor logistic regression analysis was performed to further investigate the risk factors affecting the prevalence of prostate cancer. ROC curves and Restricted Cubic Spline were established to determine the predictive value and dose-response relationship of TyG index in prostate cancer. Results: Blood potassium (OR = 0.056, 95% CI [0.021-0.148]), total cholesterol (OR = 1.07, 95% CI [0.792-1.444]) and education level (OR = 0.842, 95% CI [0.418-1.697]) were protective factors for prostate cancer, alkaline phosphatase, age, LDL, increased the risk of prostate cancer (OR = 1.016, 95% CI [1.006-1.026]) (OR = 139.253, 95% CI [18.523-1,046.893] (OR = 0.318, 95% CI [0.169-0.596]); TyG index also was a risk factor for prostate cancer, the risk increased with TyG levels,and persons in the TyGQ3 group (8.373-8.854 mg/dL) was 6.918 times (95% CI [2.275-21.043]) higher than in the Q1 group,in the TyGQ4 group (≥8.854) was 28.867 times of those in the Q1 group (95% CI [9.499-87.727]). Conclusion: TyG index may be a more accurate and efficient predictor of prostate cancer.


Subject(s)
Insulin Resistance , Prostatic Neoplasms , Male , Humans , Retrospective Studies , Prostatic Neoplasms/epidemiology , Alkaline Phosphatase , Glucose
10.
Int Immunopharmacol ; 125(Pt A): 111168, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37939513

ABSTRACT

Triple negative breast cancer (TNBC) is regarded as one of the most aggressive forms of breast cancer. Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) has been used as a therapeutic agent for Niemann-Pick disease Type C (NPC). However, the exact actions and mechanisms of HP-ß-CD on TNBC are not fully understood. To examine the influence of HP-ß-CD on the proliferation and migration of TNBC cell lines, particularly 4T1 and MDA-MB-231 cells, a range of assays, including MTT, scratch, cell cycle, and clonal formation assays, were performed. Furthermore, the effectiveness of HP-ß-CD in the treatment of TNBC was assessed in vivo using a 4T1 tumor-bearing BALB/c mouse model. We demonstrated the anti-proliferation and anti-migration effect of HP-ß-CD on TNBC both in vitro and in vivo. High cholesterol diet can attenuate HP-ß-CD-inhibited TNBC growth. Mechanistically, HP-ß-CD reduced tumor cholesterol levels by increasing ABCA1 and ABCG1-mediated cholesterol reverse transport. HP-ß-CD promoted the infiltration of T cells into the tumor microenvironment (TME) and improved exhaustion of CD8+ T cells via reducing immunological checkpoint molecules expression. Additionally, HP-ß-CD inhibited the recruitment of tumor associated macrophages to the TME via reducing CCL2-p38MAPK-NF-κB axis. HP-ß-CD also inhibited the epithelial mesenchymal transition (EMT) of TNBC cells mediated by the TGF-ß signaling pathway. In summary, our study suggests that HP-ß-CD effectively inhibited the proliferation and metastasis of TNBC, highlighting HP-ß-CD may hold promise as a potential antitumor drug.


Subject(s)
Triple Negative Breast Neoplasms , Mice , Animals , Humans , 2-Hydroxypropyl-beta-cyclodextrin/therapeutic use , 2-Hydroxypropyl-beta-cyclodextrin/pharmacology , Triple Negative Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes/metabolism , NF-kappa B , Cholesterol/metabolism , Cell Line, Tumor , Cell Proliferation , Epithelial-Mesenchymal Transition , Cell Movement , Tumor Microenvironment
11.
Biochem Pharmacol ; 218: 115928, 2023 12.
Article in English | MEDLINE | ID: mdl-37979703

ABSTRACT

Type 2 diabetes (T2D) is a chronic, burdensome disease that is characterized by disordered insulin sensitivity and disturbed glucose/lipid homeostasis. Berberine (BBR) has multiple therapeutic actions on T2D, including regulation of glucose and lipid metabolism, improvement of insulin sensitivity and energy expenditure. Recently, the function of BBR on fibroblast growth factor 21 (FGF21) has been identified. However, if BBR ameliorates T2D through FGF21, the underlying mechanisms remain unknown. Herein, we used T2D wild type (WT) and FGF21 global knockout (FKO) mice [mouse T2D model: established by high-fat diet (HFD) feeding plus streptozotocin (STZ) injection], and hepatocyte-specific peroxisome proliferator activated receptor γ (PPARγ) deficient (PPARγHepKO) mice, and cultured human liver carcinoma cells line, HepG2 cells, to characterize the role of BBR in glucose/lipid metabolism and insulin sensitivity. We found that BBR activated FGF21 expression by up-regulating PPARγ expression at the cellular level. Meanwhile, BBR ameliorated glucosamine hydrochloride (Glcn)-induced insulin resistance and increased glucose transporter 2 (GLUT2) expression in a PPARγ/FGF21-dependent manner. In T2D mice, BBR up-regulated the expression of PPARγ, FGF21 and GLUT2 in the liver, and GLUT2 in the pancreas. BBR also reversed T2D-induced insulin resistance, liver lipid accumulation, and damage in liver and pancreas. However, FGF21 deficiency diminished these effects of BBR on diabetic mice. Altogether, our study demonstrates that the therapeutic effects of BBR on T2D were partly accomplished by activating PPARγ-FGF21-GLUT2 signaling pathway. The discovery of this new pathway provides a deeper understanding of the mechanism of BBR for T2D treatment.


Subject(s)
Berberine , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Humans , Animals , Insulin Resistance/physiology , Glucose/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Berberine/pharmacology , Berberine/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Liver/metabolism , Homeostasis , Lipids
12.
J Stroke Cerebrovasc Dis ; 32(12): 107403, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37804782

ABSTRACT

OBJECTIVES: Protein Z (PZ) /Protein Z-dependent protease inhibitor (ZPI) (PZ/ZPI) system is a new anticoagulant system discovered in recent years, which plays an important role in many diseases. We aimed to compare the plasma PZ/ZPI levels of acute ischemic stroke (AIS) patients and non-stroke control participants and the role of PZ/ZPI in the development of stroke was preliminarily analyzed. MATERIALS AND METHODS: Enzyme linked immunosorbent assay (ELISA) was used to detect and compare plasma PZ levels of 86 patients with acute AIS and 85 non-stroke control patients. Multivariable Logistic regression was used to analyze whether PZ was an independent risk factor for AIS. RESULTS: In the present study, plasma PZ is closely related to inflammatory response, coagulation process and platelet activation, and may participate in the development of AIS by inducing inflammatory responses and interfering with the coagulation process. CONCLUSIONS: Our results suggested that plasma PZ level is one of the independent risk factors of AIS, and plasma ZPI was closely related to coagulation and platelet parameter and may play a role in the coagulation process during AIS.


Subject(s)
Ischemic Stroke , Serpins , Humans , Protease Inhibitors/metabolism , Serpins/metabolism , Serpins/pharmacology , Ischemic Stroke/diagnosis , Prospective Studies , Blood Proteins/metabolism
13.
Eur J Med Chem ; 258: 115602, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37406380

ABSTRACT

Pterostilbene is a demethylated resveratrol derivative with attractive anti-inflammatory, anti-tumor and anti-oxidative stress activities. However, the clinical use of pterostilbene is limited by its poor selectivity and druggability. Heart failure is a leading cause of morbidity and mortality worldwide, which is closely related to enhanced oxidative stress and inflammation. There is an urgent need for new effective therapeutic drugs that can reduce oxidative stress and inflammatory responses. Therefore, we designed and synthesized a series of novel pterostilbene chalcone and dihydropyrazole derivatives with antioxidant and anti-inflammatory activities by the molecular hybridization strategy. The preliminary anti-inflammatory activities and structure-activity relationships of these compounds were evaluated by nitric oxide (NO) inhibitory activity in lipopolysaccharide (LPS)-treated RAW264.7 cells, and compound E1 exhibited the most potent anti-inflammatory activities. Furthermore, pretreatment with compound E1 decreased reactive oxygen species (ROS) generation both in RAW264.7 and H9C2 cells by increasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), as well as downstream antioxidant enzymes superoxide dismutase 1 (SOD1), catalase (CAT) and glutathione peroxidase 1 (GPX1). In addition, compound E1 also significantly inhibited LPS or doxorubicin (DOX)-induced inflammation in both RAW264.7 and H9C2 cells through reducing the expression of inflammatory cytokines by inhibiting nuclear factor-κB (NF-κB) signaling pathway. Moreover, we found that compound E1 improved DOX-induced heart failure by inhibiting inflammation and oxidative stress in mouse model, which is mediated by the potential of antioxidant and anti-inflammatory activities. In conclusion, this study demonstrated the novel pterostilbene dihydropyrazole derivative E1 was identified as a promising agent for heart failure treatment.


Subject(s)
Heart Failure , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Antioxidants/therapeutic use , NF-E2-Related Factor 2/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Signal Transduction , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Oxidative Stress , Anti-Inflammatory Agents/adverse effects , Heart Failure/drug therapy , Doxorubicin/pharmacology
14.
MedComm (2020) ; 4(4): e320, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37426678

ABSTRACT

Efferocytosis, the process of engulfing and removing apoptotic cells, is attenuated in vulnerable plaques of advanced atherosclerosis. T-cell immunoglobulin and mucin domain 4 (TIMD4) is a recognition receptor protein for efferocytosis that has been implicated in atherosclerosis mouse models. However, the role of serum-soluble TIMD4 (sTIMD4) in coronary heart disease (CHD) remains unknown. In this study, we analyzed serum samples collected from two groups: Group 1 (36 healthy controls and 70 CHD patients) and Group 2 (44 chronic coronary syndrome [CCS]) and 81 acute coronary syndrome [ACS] patients). We found that sTIMD4 levels in patients with CHD were significantly higher than those in healthy controls and were also higher in ACS than in CCS patients. The area under the receiver operating characteristic curve was 0.787. Furthermore, our in vitro results showed that low-density lipoprotein/lipopolysaccharide activated p38 mitogen-activated protein kinase, which in turn enhanced a disintegrin and metalloproteinase 17, resulting in increased secretion of sTIMD4. This impairment of macrophage efferocytosis promoted inflammation. Thus, this study is not only the first identification of a potential novel biomarker of CHD, sTIMD4, but also demonstrated its pathogenesis mechanism, providing a new direction for the diagnosis and treatment of CHD.

15.
Acta Pharmacol Sin ; 44(11): 2216-2229, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37402997

ABSTRACT

Excessive fructose consumption increases hepatic de novo lipogenesis, resulting in cellular stress, inflammation and liver injury. Nogo-B is a resident protein of the endoplasmic reticulum that regulates its structure and function. Hepatic Nogo-B is a key protein in glycolipid metabolism, and inhibition of Nogo-B has protective effects against metabolic syndrome, thus small molecules that inhibit Nogo-B have therapeutic benefits for glycolipid metabolism disorders. In this study we tested 14 flavones/isoflavones in hepatocytes using dual luciferase reporter system based on the Nogo-B transcriptional response system, and found that 6-methyl flavone (6-MF) exerted the strongest inhibition on Nogo-B expression in hepatocytes with an IC50 value of 15.85 µM. Administration of 6-MF (50 mg· kg-1 ·d-1, i.g. for 3 weeks) significantly improved insulin resistance along with ameliorated liver injury and hypertriglyceridemia in high fructose diet-fed mice. In HepG2 cells cultured in a media containing an FA-fructose mixture, 6-MF (15 µM) significantly inhibited lipid synthesis, oxidative stress and inflammatory responses. Furthermore, we revealed that 6-MF inhibited Nogo-B/ChREBP-mediated fatty acid synthesis and reduced lipid accumulation in hepatocytes by restoring cellular autophagy and promoting fatty acid oxidation via the AMPKα-mTOR pathway. Thus, 6-MF may serve as a potential Nogo-B inhibitor to treat metabolic syndrome caused by glycolipid metabolism dysregulation.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Flavones , Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Mice , Animals , Fructose/adverse effects , Fructose/metabolism , Metabolic Syndrome/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Lipid Metabolism , Diet , Lipogenesis , Flavones/pharmacology , Flavones/therapeutic use , Flavones/metabolism , Fatty Acids/metabolism , Glycolipids , Lipids
16.
Nutrients ; 15(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37432306

ABSTRACT

Licorice is a traditional and versatile herbal medicine and food. Glabridin (Gla) is a kind of isoflavone extracted from the licorice root, which has anti-obesity, anti-atherosclerotic, and antioxidative effects. Alcoholic liver disease (ALD) is a widespread liver disease induced by chronic alcohol consumption. However, studies demonstrating the effect of Gla on ALD are rare. The research explored the positive effect of Gla in C57BL/6J mice fed by the Lieber-DeCarli ethanol mice diet and HepG2 cells treated with ethanol. Gla alleviated ethanol-induced liver injury, including reducing liver vacuolation and lipid accumulation. The serum levels of inflammatory cytokines were decreased in the Gla-treated mice. The reactive oxygen species and apoptosis levels were attenuated and antioxidant enzyme activity levels were restored in ethanol-induced mice by Gla treatment. In vitro, Gla reduced ethanol-induced cytotoxicity, nuclear factor kappa B (NF-κB) nuclear translocation, and enhanced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation. Anisomycin (an agonist of p38 MAPK) eliminated the positive role of Gla on ethanol-caused oxidative stress and inflammation. On the whole, Gla can alleviate alcoholic liver damage via the p38 MAPK/Nrf2/NF-κB pathway and may be used as a novel health product or drug to potentially alleviate ALD.


Subject(s)
Inflammation , Liver Diseases, Alcoholic , Oxidative Stress , Signal Transduction , Animals , Female , Humans , Mice , Apoptosis/drug effects , Cell Line, Tumor , Ethanol/toxicity , Inflammation/drug therapy , Liver Diseases, Alcoholic/metabolism , Mice, Inbred C57BL , NF-kappa B/metabolism , Oxidative Stress/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Signal Transduction/drug effects
17.
Bioorg Chem ; 138: 106654, 2023 09.
Article in English | MEDLINE | ID: mdl-37300959

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder with a complex etiology. Neuroinflammation and oxidative stress are important factors driving the progression of PD. It has been reported that 1,3,4-oxadiazole and flavone derivatives have numerous biological functions, especially in the aspect of anti-inflammatory and antioxidant. Based on the strategy of pharmacodynamic combination, we introduced 1,3,4-oxadiazole moiety into the flavonoid backbone, designed and synthesized a series of novel flavonoid 1,3,4-oxadiazole derivatives. Further, we evaluated their toxicity, anti-inflammatory and antioxidant activities using BV2 microglia. Following a comprehensive analysis, compound F12 showed the best pharmacological activity. In vivo, we induced the classical PD animal model by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into C57/BL6J mice. Our results showed that compound F12 ameliorated MPTP-induced dysfunction in mice. Further, compound F12 reduced oxidative stress by promoting the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) and decreased the inflammatory response by inhibiting the nuclear translocation of nuclear factor-κB (NF-κB) in vivo and in vitro. Meanwhile, compound F12 inhibited the mitochondrial apoptotic pathway to rescue microglia inflammation-mediated loss of dopaminergic neurons. In conclusion, compound F12 reduced oxidative stress and inflammation and could be as a potential agent for PD treatment.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Mice , Animals , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , NF-kappa B/metabolism , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Flavonoids/pharmacology , Flavonoids/therapeutic use , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Signal Transduction , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Mice, Inbred C57BL
18.
Eur J Med Chem ; 255: 115417, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37137246

ABSTRACT

Inflammation is one of a major feature of Parkinson's disease (PD) which poses a threat to people's health in the world. It has been reported that antioxidation and anti-inflammation have significant effects on the treatment of PD. 1,2,4-oxadiazole and flavone derivatives have remarkable antioxidant and anti-inflammatory activities. In order to find highly effective drugs for PD treatment, based on the remarkable anti-inflammatory and antioxidant activities of the 1,2,4-oxadiazole pharmacophore and the flavonoid pharmacophore, we designed and synthesized a novel series of 3-methyl-8-(3-methyl-1,2,4-oxadiazol-5-yl)-2-phenyl-4H-chromen-4-one derivatives by pharmacophore combination, and evaluated their anti-inflammatory and antioxidation activities for PD treatment. Preliminary structure-activity relationship (SAR) analysis was conducted by their inhibitory activities against reactive oxygen species (ROS) and NO release in LPS-induced BV2 Microglia cells, and the optimal compound Flo8 exhibited the most potent anti-inflammatory and antioxidant activities. Both in vivo and in vitro results showed that Flo8 inhibited neuronal apoptosis by inhibiting inflammatory and apoptotic signaling pathways. In vivo studies also showed that the compound Flo8 ameliorated motor and behavioral deficits and increased serum dopamine levels in MPTP-induced PD model mice. Taken together, this study demonstrated the compound Flo8 could be a promising agent for the treatment of PD.


Subject(s)
Flavones , Neuroprotective Agents , Parkinson Disease , Mice , Animals , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Antioxidants/pharmacology , Oxadiazoles/pharmacology , Oxadiazoles/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Structure-Activity Relationship , Flavones/pharmacology , Mice, Inbred C57BL , Disease Models, Animal , Neuroprotective Agents/pharmacology , Microglia
19.
Int Immunopharmacol ; 120: 110378, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37244119

ABSTRACT

BACKGROUND & AIMS: Ulcerative colitis (UC) is a main type of inflammatory bowel diseases which spreads globally during the westernization of lifestyle over the past few decades. However, the cause of UC is still not fully understood. We aimed to disclose the role of Nogo-B in the development of UC. METHODS: Nogo-deficiency (Nogo-/-) and wild-type male mice were treated with dextran sodium sulfate (DSS) to conduct a UC model, followed by determination of colon and serum inflammatory cytokines level. RAW264.7, THP1 and NCM460 cells were used to determine macrophage inflammation as well as proliferation and migration of NCM460 cells under Nogo-B or miR-155 intervention. RESULTS: Nogo deficiency significantly reduced DSS-induced weight loss, colon length and weight reduction, and inflammatory cells accumulation in the intestinal villus, while increased the expression of tight junctions (TJs) proteins (Zonula occludens-1, Occludin) and adherent junctions (AJs) proteins (E-cadherin, α-catenin), implying that Nogo deficiency attenuated DSS-induced UC. Mechanistically, Nogo-B deficiency reduced TNFα, IL-1ß and IL-6 levels in the colon, serum, RAW264.7 cells and THP1-derived macrophages. Furthermore, we identified that Nogo-B inhibition can reduce the maturation of miR-155, which is essential for Nogo-B-affected inflammatory cytokines expression. Interestingly, we determined that Nogo-B and p68 can interact with each other to promote the expression and activation of Nogo-B and p68, thus facilitating miR-155 maturation to induce macrophage inflammation. Blocking p68 inhibited Nogo-B, miR-155, TNFα, IL-1ß and IL-6 expression. Moreover, the culture medium collected from Nogo-B overexpressed macrophages can inhibit enterocytes NCM460 cells proliferation and migration. CONCLUSION: We disclose that Nogo deficiency reduced DSS-induced UC via inhibiting p68-miR-155-activated inflammation. Our results indicate that Nogo-B inhibition serves as a new potential therapeutic candidate for the prevention and treatment of UC.


Subject(s)
Colitis, Ulcerative , MicroRNAs , Male , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Colon/metabolism , Inflammation/drug therapy , Signal Transduction , Cytokines/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Dextran Sulfate , Disease Models, Animal , Mice, Inbred C57BL
20.
Acta Pharmacol Sin ; 44(10): 2065-2074, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37225845

ABSTRACT

Diabetes-related vascular complications include diabetic cardiovascular diseases (CVD), diabetic nephropathy (DN) and diabetic retinopathy, etc. DN can promote the process of end-stage renal disease. On the other hand, atherosclerosis accelerates kidney damage. It is really an urge to explore the mechanisms of diabetes-exacerbated atherosclerosis as well as new agents for treatment of diabetes-exacerbated atherosclerosis and the complications. In this study we investigated the therapeutic effects of fisetin, a natural flavonoid from fruits and vegetables, on kidney injury caused by streptozotocin (STZ)-induced diabetic atherosclerosis in low density lipoprotein receptor deficient (LDLR-/-) mice. Diabetes was induced in LDLR-/- mice by injecting STZ, and the mice were fed high-fat diet (HFD) containing fisetin for 12 weeks. We found that fisetin treatment effectively attenuated diabetes-exacerbated atherosclerosis. Furthermore, we showed that fisetin treatment significantly ameliorated atherosclerosis-enhanced diabetic kidney injury, evidenced by regulating uric acid, urea and creatinine levels in urine and serum, and ameliorating morphological damages and fibrosis in the kidney. In addition, we found that the improvement of glomerular function by fisetin was mediated by reducing the production of reactive oxygen species (ROS), advanced glycosylation end products (AGEs) and inflammatory cytokines. Furthermore, fisetin treatment reduced accumulation of extracellular matrix (ECM) in the kidney by inhibiting the expression of vascular endothelial growth factor A (VEGFA), fibronectin and collagens, while enhancing matrix metalloproteinases 2 (MMP2) and MMP9, which was mainly mediated by inactivating transforming growth factor ß (TGFß)/SMAD family member 2/3 (Smad2/3) pathways. In both in vivo and in vitro experiments, we demonstrated that the therapeutic effects of fisetin on kidney fibrosis resulted from inhibiting CD36 expression. In conclusion, our results suggest that fisetin is a promising natural agent for the treatment of renal injury caused by diabetes and atherosclerosis. We reveal that fisetin is an inhibitor of CD36 for reducing the progression of kidney fibrosis, and fisetin-regulated CD36 may be a therapeutic target for the treatment of renal fibrosis.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Animals , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Fibrosis/drug therapy , Kidney/pathology , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , CD36 Antigens/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...