Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 38(2): 351-364, 2024 02.
Article in English | MEDLINE | ID: mdl-38195819

ABSTRACT

S-palmitoylation is essential for cancer development via regulating protein stability, function and subcellular location, yet the roles S-palmitoylation plays in diffuse large B-cell lymphoma (DLBCL) progression remain enigmatic. In this study, we uncovered a novel function of the palmitoyltransferase ZDHHC21 as a tumor suppressor in DLBCL and identified ZDHHC21 as a key regulator of fatty acid synthetase (FASN) S-palmitoylation for the first time. Specifically, ZDHHC21 was downregulated in DLBCL, and its expression level was associated with the clinical prognosis of patients with DLBCL. In vitro and in vivo experiments suggested that ZDHHC21 suppressed DLBCL cell proliferation. Mechanistically, ZDHHC21 interacted with FASN and mediated its palmitoylation at Cys1317, resulting in a decrease in FASN protein stability and fatty acid synthesis, consequently leading to the inhibition of DLBCL cell growth. Of note, an FDA-approved small-molecule compound lanatoside C interacted with ZDHHC21, increased ZDHHC21 protein stability and decreased FASN expression, which contributed to the suppression of DLBCL growth in vitro and in vivo. Our results demonstrate that ZDHHC21 strongly represses DLBCL cell proliferation by mediating FASN palmitoylation, and suggest that targeting ZDHHC21/FASN axis is a potential therapeutic strategy against DLBCL.


Subject(s)
Fatty Acid Synthase, Type I , Lymphoma, Large B-Cell, Diffuse , Humans , Cell Line, Tumor , Cell Proliferation , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Fatty Acids , Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Prognosis
2.
J Hematol Oncol ; 16(1): 98, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37612741

ABSTRACT

Cancers are a group of heterogeneous diseases characterized by the acquisition of functional capabilities during the transition from a normal to a neoplastic state. Powerful experimental and computational tools can be applied to elucidate the mechanisms of occurrence, progression, metastasis, and drug resistance; however, challenges remain. Bulk RNA sequencing techniques only reflect the average gene expression in a sample, making it difficult to understand tumor heterogeneity and the tumor microenvironment. The emergence and development of single-cell RNA sequencing (scRNA-seq) technologies have provided opportunities to understand subtle changes in tumor biology by identifying distinct cell subpopulations, dissecting the tumor microenvironment, and characterizing cellular genomic mutations. Recently, scRNA-seq technology has been increasingly used in cancer studies to explore tumor heterogeneity and the tumor microenvironment, which has increased the understanding of tumorigenesis and evolution. This review summarizes the basic processes and development of scRNA-seq technologies and their increasing applications in cancer research and clinical practice.


Subject(s)
Carcinogenesis , Research , Humans , Cell Transformation, Neoplastic , Mutation , Tumor Microenvironment/genetics
3.
Curr Med Sci ; 43(4): 679-688, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37326888

ABSTRACT

OBJECTIVE: Metabolic disorders are regarded as hallmarks of multiple myeloma (MM) and are responsible for rapid cancer cell proliferation and tumor growth. However, the exact biological roles of metabolites in MM cells have not been fully explored. This study aimed to explore the feasibility and clinical significance of lactate for MM and investigate the molecular mechanism of lactic acid (Lac) in the proliferation of myeloma cells and cell sensitivity to bortezomib (BTZ). METHODS: Metabolomic analysis of the serum was carried out to obtain metabolites expression and clinical characteristics in MM patients. The CCK8 assay and flow cytometry were used to detect cell proliferation, apoptosis, and cell cycle changes. Western blotting was used to detect the potential mechanism and apoptosis- and cycle-related protein changes. RESULTS: Lactate was highly expressed in both the peripheral blood and bone marrow of MM patients. It was significantly correlated with Durie-Salmon Staging (DS Staging) and the International Staging System (ISS Staging) and the serum and urinary involved/uninvolved free light chain ratios. Patients with relatively high lactate levels had a poor treatment response. Moreover, in vitro experiments showed that Lac could promote the proliferation of tumor cells and decrease the proportion of G0/G1-phase cells, which was accompanied by an increased proportion of S-phase cells. In addition, Lac could decrease tumor sensitivity to BTZ by disrupting the expression of nuclear factor kappa B subunit 2 (NFkB2) and RelB. CONCLUSION: Metabolic changes are important in MM cell proliferation and treatment response; lactate could be used as a biomarker in MM and as a therapeutic target to overcome cell resistance to BTZ.


Subject(s)
Antineoplastic Agents , Bortezomib , Drug Resistance, Neoplasm , Lactic Acid , Multiple Myeloma , Adult , Aged , Female , Humans , Male , Middle Aged , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bortezomib/pharmacology , Bortezomib/therapeutic use , Cell Cycle Proteins/metabolism , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/physiology , Lactic Acid/blood , Lactic Acid/metabolism , Lactic Acid/pharmacology , Metabolome , Multiple Myeloma/blood , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Prognosis
4.
Hemasphere ; 7(1): e822, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36570690

ABSTRACT

Extranodal NK/T-cell lymphoma (ENKTL) is a highly aggressive and heterogeneous disease with poor clinical outcome. Our previous work had demonstrated that circulating tumor DNA (ctDNA) analyses were feasible in ENKTL, and dynamic tracing of ctDNA could be used to monitor the disease status. However, the prognostic value of ctDNA in ENKTL has not been fully investigated. Patients with newly diagnosed ENKTL from February 2017 to December 2021 (n = 70) were enrolled. The pretreatment ctDNA concentration (hGE/mL) was measured. The prognostic value of ctDNA, international prognostic index (IPI), Korean prognostic index (KPI), PINK-E, and the combination of PINK-E and ctDNA (PINK-EC) were investigated in our cohort. The IPI and PINK-E risk categories had a significant difference in progression-free survival (PFS) and overall survival (OS) between the low-risk and intermediate-risk groups. The KPI risk category had a difference in PFS and OS between the intermediate-risk and high-risk groups. Furthermore, integrating ctDNA into the PINK-E model could overcome the shortcomings of other prognostic models, which could significantly distinguish the different-risk groups. Overall, our results demonstrated that PINK-EC showed a superior prognostic prediction value and stability compared with IPI, KPI, and PINK-E. The integration of molecular features of the tumor into classic risk categories might better characterize a high-risk group where novel treatment approaches are most needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...