Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 203: 34-44, 2023 07.
Article in English | MEDLINE | ID: mdl-37011700

ABSTRACT

Aging is accompanied by a decline in DNA repair efficiency, which leads to the accumulation of different types of DNA damage. Age-associated chronic inflammation and generation of reactive oxygen species exacerbate the aging process and age-related chronic disorders. These inflammatory processes establish conditions that favor accumulation of DNA base damage, especially 8-oxo-7,8 di-hydroguanine (8-oxoG), which in turn contributes to various age associated diseases. 8-oxoG is repaired by 8-oxoG glycosylase1 (OGG1) through the base excision repair (BER) pathway. OGG1 is present in both the cell nucleus and in mitochondria. Mitochondrial OGG1 has been implicated in mitochondrial DNA repair and increased mitochondrial function. Using transgenic mouse models and cell lines that have been engineered to have enhanced expression of mitochondria-targeted OGG1 (mtOGG1), we show that elevated levels of mtOGG1 in mitochondria can reverse aging-associated inflammation and improve functions. Old male mtOGG1Tg mice show decreased inflammation response, decreased TNFα levels and multiple pro-inflammatory cytokines. Moreover, we observe that male mtOGG1Tg mice show resistance to STING activation. Interestingly, female mtOGG1Tg mice did not respond to mtOGG1 overexpression. Further, HMC3 cells expressing mtOGG1 display decreased release of mtDNA into the cytoplasm after lipopolysacchride induction and regulate inflammation through the pSTING pathway. Also, increased mtOGG1 expression reduced LPS-induced loss of mitochondrial functions. These results suggest that mtOGG1 regulates age-associated inflammation by controlling release of mtDNA into the cytoplasm.


Subject(s)
DNA Glycosylases , DNA, Mitochondrial , Animals , Female , Male , Mice , DNA Damage , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA Repair , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Inflammation/genetics , Inflammation/metabolism , Mice, Transgenic , Mitochondria/genetics , Mitochondria/metabolism , Neuroinflammatory Diseases , Oxidative Stress/genetics , Humans
2.
EBioMedicine ; 73: 103646, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34689087

ABSTRACT

BACKGROUND: Senescent cells accumulate in tissues over time as part of the natural ageing process and the removal of senescent cells has shown promise for alleviating many different age-related diseases in mice. Cancer is an age-associated disease and there are numerous mechanisms driving cellular senescence in cancer that can be detrimental to recovery. Thus, it would be beneficial to develop a senolytic that acts not only on ageing cells but also senescent cancer cells to prevent cancer recurrence or progression. METHODS: We used molecular modelling to develop a series of rationally designed peptides to mimic and target FOXO4 disrupting the FOXO4-TP53 interaction and releasing TP53 to induce apoptosis. We then tested these peptides as senolytic agents for the elimination of senescent cells both in cell culture and in vivo. FINDINGS: Here we show that these peptides can act as senolytics for eliminating senescent human cancer cells both in cell culture and in orthotopic mouse models. We then further characterized one peptide, ES2, showing that it disrupts FOXO4-TP53 foci, activates TP53 mediated apoptosis and preferentially binds FOXO4 compared to TP53. Next, we show that intratumoural delivery of ES2 plus a BRAF inhibitor results in a significant increase in apoptosis and a survival advantage in mouse models of melanoma. Finally, we show that repeated systemic delivery of ES2 to older mice results in reduced senescent cell numbers in the liver with minimal toxicity. INTERPRETATION: Taken together, our results reveal that peptides can be generated to specifically target and eliminate FOXO4+ senescent cancer cells, which has implications for eradicating residual disease and as a combination therapy for frontline treatment of cancer. FUNDING: This work was supported by the Cancer Early Detection Advanced Research Center at Oregon Health & Science University.


Subject(s)
Antineoplastic Agents/chemistry , Cell Cycle Proteins/chemistry , Drug Design , Forkhead Transcription Factors/chemistry , Models, Molecular , Peptides/chemistry , Senotherapeutics/chemistry , Tumor Suppressor Protein p53/chemistry , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Proteins/metabolism , Cellular Senescence/drug effects , Disease Models, Animal , Female , Forkhead Transcription Factors/metabolism , Humans , Male , Melanoma , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides/pharmacology , Protein Conformation , Senotherapeutics/pharmacology , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
3.
ACS Omega ; 5(50): 32183-32194, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33376856

ABSTRACT

G protein-coupled receptors (GPCRs) play a pivotal role in regulating key physiological events in all animal species. Recent advances in collective analysis of genes and proteins revealed numerous potential neuropeptides and GPCRs from insect species, allowing for the characterization of peptide-receptor pairs. In this work, we used fluorescence resonance energy transfer (FRET)-based genetically encoded biosensors in intact mammalian cells to study the pharmacological features of the cognate GPCR of the type-C allatostatin (AST-C) peptide from the stick insect, Carausius morosus. Analysis of multiple downstream pathways revealed that AST-C can activate the human Gi2 protein, and not Gs or Gq, through AST-C receptor (AlstRC). Activated AlstRC recruits ß-arrestin2 independent of the Gi protein but stimulates ERK phosphorylation in a Gi protein-dependent manner. Identification of Gαi-, arrestin-, and GRK-like transcripts from C. morosus revealed high evolutionary conservation at the G protein level, while ß-arrestins and GRKs displayed less conservation. In conclusion, our study provides experimental and homology-based evidence on the functionality of vertebrate G proteins and downstream signaling biosensors to characterize early signaling steps of an insect GPCR. These results may serve as a scaffold for developing assays to characterize pharmacological and structural aspects of other insect GPCRs and can be used in deorphanization and pesticide studies.

4.
J Mol Graph Model ; 101: 107720, 2020 12.
Article in English | MEDLINE | ID: mdl-32937277

ABSTRACT

Adipokinetic hormone (AKH) is an insect neuropeptide that plays crucial roles in a variety of physiological functions such as regulation of heartbeat frequency, blood hemolymph trehalose levels, and protein synthesis. It exerts its functions through binding to its cognate G protein-coupled receptor (GPCR), named adipokinetic hormone receptor (AKHR). The aim of this study is to characterize AKHR of stick insect, Carausius morosus, which becomes an agricultural and forest pest during its outbreaks, and to screen pesticide candidates that would act through inhibition of AKHR. To this aim, the sequence of the receptor and its ligand were obtained from previously published transcriptome data and homology modeling, molecular docking, and molecular dynamics (MD) simulations were combined to find the ligand-binding pocket of AKHR. As a result, crucial residues in ligand binding were identified. These residues were located at the 6th and 7th transmembrane (TM) domains and the 2nd extracellular loop (ECL) of AKHR model. In order to propose pesticide candidates, virtual screening was performed, and candidate ligands were obtained. Considering the binding energies and the stability of the interaction between the ligand and the receptor, four hit compounds were selected. In conclusion, this study revealed a possible ligand-binding pocket of AKHR and proposed some high-affinity small-molecules to block its function, which would further facilitate pesticide design studies against the same receptor of various pests.


Subject(s)
Pesticides , Animals , Insect Hormones , Insect Proteins/genetics , Insecta , Molecular Docking Simulation , Oligopeptides , Pyrrolidonecarboxylic Acid/analogs & derivatives
5.
Turk J Biol ; 43(1): 77-88, 2019.
Article in English | MEDLINE | ID: mdl-30930638

ABSTRACT

G protein-coupled receptors (GPCRs) are 7-transmembrane proteins that transduce various extracellular signals into intracellular pathways. They are the major target of neuropeptides, which regulate the development, feeding behavior, mating behavior, circadian rhythm, and many other physiological functions of insects. In the present study, we performed RNA sequencing and de novo transcriptome assembly to uncover the GPCRs expressed in the stick insect Carausius morosus. The transcript assemblies were predicted for the presence of 7-transmembrane GPCR domains. As a result, 430 putative GPCR transcripts were obtained and 43 of these revealed full-length sequences with highly significant similarity to known GPCR sequences in the databases. Thirteen different GPCRs were chosen for tissue expression analysis. Some of these receptors, such as calcitonin, inotocin, and tyramine receptors, showed specific expression in some of the tissues. Additionally, GPCR prediction yielded a novel uncharacterized GPCR sequence, which was specifically expressed in the central nervous system and ganglia. Previously, the only information about the anatomy of the stick insect was on its gastrointestinal system. This study provides complete anatomical information about the adult insect.

6.
Sci Rep ; 7: 41266, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28117376

ABSTRACT

Allatostatins (AST) are neuropeptides with variable function ranging from regulation of developmental processes to the feeding behavior in insects. They exert their effects by binding to cognate GPCRs, called Allatostatin receptors (AlstR), which emerge as promising targets for pesticide design. However, AlstRs are rarely studied. This study is the first reported structural study on AlstR-AST interaction. In this work, the first C type AlstR from the stick insect Carausius morosus (CamAlstR-C) was identified and its interaction with type C AST peptide was shown to be physically consistent with the experimental results. The proposed structure of CamAlstR-C revealed a conserved motif within the third extracellular loop, which, together with the N-terminus is essential for ligand binding. In this work, computational studies were combined with molecular and nano-scale approaches in order to introduce an unknown GPCR-ligand system. Consequently, the data obtained provided a reliable target region for future agonist/inverse agonist studies on AlstRs.


Subject(s)
Insect Proteins/metabolism , Insecta/metabolism , Neuropeptides/metabolism , Receptors, Cell Surface/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites , Insect Proteins/chemistry , Ligands , Models, Molecular , Peptides/chemistry , Peptides/metabolism , Phylogeny , Protein Binding , Protein Structure, Secondary , Receptors, Cell Surface/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...