Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 125, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167594

ABSTRACT

Ecto-nucleotide pyrophosphatases/phosphodiesterases 1 (ENPP1) is a key enzyme in purinergic signaling pathways responsible for cell-to-cell communications and regulation of several fundamental pathophysiological processes. In this study, Kyoto Green, a rapid chemical sensor of pyrophosphate, was employed to screen for effective ENPP1 inhibitors among five representative flavonoids (quercetin, myricetin, morin, kaempferol, and quercetin-3-glucoside), five nucleosides (adenosine, guanosine, inosine, uridine, and cytidine), and five deoxynucleosides (2'- and 3'-deoxyadenosine, 2'-deoxyguanosine, 2'-deoxyinosine, and 2'-deoxyuridine). Conventional colorimetric, fluorescence, and bioluminescence assays revealed that ENPP1 was effectively inhibited by quercetin (Ki ~ 4 nM) and myricetin (Ki ~ 32 nM) when ATP was used as a substrate at pH 7.4. In silico analysis indicated that the presence of a chromone scaffold, particularly one containing a hydroxyl group at the 3' position on the B ring, may promote binding to the active site pocket of ENPP1 and enhance inhibition. This study demonstrated that the naturally derived quercetin and myricetin could effectively inhibit ENPP1 enzymatic activity and may offer health benefits in arthritis management.


Subject(s)
Flavonoids , Quercetin , Humans , Quercetin/pharmacology , Flavonoids/pharmacology , Flavonoids/chemistry , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism
2.
Sci Rep ; 13(1): 7505, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37160946

ABSTRACT

Conventional polarized light microscopy has been widely used to detect gouty crystals, but its limited sensitivity increases the risk of misidentification. In this study, a number of methods were investigated to improve the sensitivity of polarized light microscopy for the detection of monosodium urate monohydrate (MSUM) and calcium pyrophosphate dihydrate (CPPD) crystals. We found that coating glass slides with poly-L-lysine, a positively charged polymer, improved the attachment of crystals to the glass surface, resulting in clearer crystal images compared to non-coated slides. Additionally, the sensitivity of detection was further enhanced by selective dissolution, in which 40% v/v formalin phosphate buffer was employed to dissolve MSUM crystals but not CPPD while 10% ethylenediamine tetraacetic acid (EDTA) was employed to dissolved CPPD but not MSUM. The other possible interferences were dissolved in both EDTA and formalin solution. These methods were successfully applied to detect gouty crystals in biological milieu, including spiked porcine synovial fluid and inflamed rat subcutaneous air pouch tissues.


Subject(s)
Gout , Animals , Rats , Swine , Edetic Acid , Microscopy, Polarization , Solubility , Gout/diagnosis , Formaldehyde
SELECTION OF CITATIONS
SEARCH DETAIL