Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
Eur J Pharm Biopharm ; 198: 114276, 2024 May.
Article in English | MEDLINE | ID: mdl-38582179

ABSTRACT

The eye is one of the most complex organs in the human body, with a unique anatomy and physiology, being divided into anterior and posterior segments. Ocular diseases can occur in both segments, but different diseases affect different segments. Glaucoma and cataracts affect the anterior segment, while macular degeneration and diabetic retinopathy occur in the posterior segment. The easiest approach to treat ocular diseases, especially in the anterior segment, is through the administration of topical eye drops, but this route presents many constraints, namely precorneal dynamic and static ocular barriers. On the other hand, the delivery of drugs to the posterior segment of the eye is far more challenging and is mainly performed by the intravitreal route. However, it can lead to severe complications such as retinal detachment, endophthalmitis, increased intraocular pressure and haemorrhage. The design of new drug delivery systems for the anterior segment is very challenging, but targeting the posterior one is even more difficult and little progress has been made. In this review we will discuss various strategies including the incorporation of additives in the formulations, such as viscosity, permeability, and solubility enhancers, namely based on Deep eutectic systems (DES). Natural deep eutectic systems (NADES) have emerged to solve several problems encountered in pharmaceutical industry, regarding the pharmacokinetic and pharmacodynamic properties of drugs. NADES can contribute to the design of advanced technologies for ocular therapeutics, including hydrogels and nanomaterials. Here in, we revise some applications of (NA)DES in the development of new drug delivery systems that can be translated into the ophthalmology field.


Subject(s)
Eye Diseases , Macular Degeneration , Humans , Eye/metabolism , Eye Diseases/drug therapy , Drug Delivery Systems , Pharmaceutical Preparations , Macular Degeneration/drug therapy
2.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38399436

ABSTRACT

Chemists in the medicinal chemistry field are constantly searching for alternatives towards more sustainable and eco-friendly processes for the design and synthesis of drug candidates. The pharmaceutical industry is one of the most polluting industries, having a high E-factor, which is driving the adoption of more sustainable processes not only for new drug candidates, but also in the production of well-established active pharmaceutical ingredients. Deep eutectic systems (DESs) have emerged as a greener alternative to ionic liquids, and their potential to substitute traditional organic solvents in drug discovery has raised interest among scientists. With the use of DESs as alternative solvents, the processes become more attractive in terms of eco-friendliness and recyclability. Furthermore, they might be more effective through making the process simpler, faster, and with maximum efficiency. This review will be focused on the role and application of deep eutectic systems in drug discovery, using biocatalytic processes and traditional organic chemical reactions, as new environmentally benign alternative solvents. Furthermore, herein we also show that DESs, if used in the pharmaceutical industry, may have a significant effect on lowering production costs and decreasing the impact of this industry on the quality of the environment.

3.
Foods ; 12(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37835308

ABSTRACT

Rosehips are processed and consumed in numerous forms, such as juice, wine, herbal tea, yogurt, preserved fruit, and canned products. The seeds share in fruit is 30-35% and they have recently been recognized as an important source of oil rich in unsaturated fatty acids. However, after defatting, seed waste may still contain some polar polyphenolic compounds, which have been scarcely investigated. The aim of this study was to examine the potential of the defatted seed waste as a source of polyphenols. For the defatting process, supercritical carbon dioxide extraction at 300 bar and 40 °C was applied. The capacity of eight different natural deep eutectic solvents (NADES) for the recovery of phenolics from defatted rosehip seed powder (dRSP) was examined. In the extracts obtained with ultrasound-assisted NADES extraction, twenty-one phenolic compounds were identified with LC-MS/MS, among which the most abundant were quinic acid (22.43 × 103 µg/g dRSP) and catechin (571.93 µg/g dRSP). Ternary NADES formulations based on lactic acid proved to be superior. Potential correlations between identified chemical compounds, solvent polarity and viscosity, as well as the compound distributions across studied solvent combinations in PCA hyperspace, were also investigated. PCA demonstrated that more polar NADES mixtures showed improved extraction potential. The established environmentally friendly process represents an approach of transforming rosehip seed waste into value-added products with the potential to be applied in the food industry and to contribute to sustainable production.

5.
Biomolecules ; 13(7)2023 07 14.
Article in English | MEDLINE | ID: mdl-37509162

ABSTRACT

The aim of this work was to establish the potential of natural deep eutectic solvents (NADES) for the stabilization of aroma volatile organic compounds from a natural source. Satureja montana was used as a source of volatile components, as it is rich in terpenes of great commercial and biological importance, such as carvacrol, thymol, and thymoquinone, among others. Supercritical CO2 was used to extract the lipophilic fraction of S. montana, which was further directly dispersed in NADES. The stabilizing capacity of seven different NADES based on betaine and glycerol was analyzed. The stability of the components in NADES was monitored by analyzing the headspace profile during 6 months of storage at room temperature. The changes in the headspace profile over time were analyzed by using different statistical and chemometric tools and the Wilcoxon matched pair test. It was determined that alterations over time occurred such as degradation and oxidation, and they were the most prominent in the control. In addition, the indicator of decreased stability of the control was the formation of the new compounds that could compromise the quality of the product. In the stabilized NADES samples, the changes were significantly less prominent, indicating that the NADES had a stabilizing effect on the volatile compounds. According to Wilcoxon matched pair test, the most efficient stability was achieved by using betaine/ethylene glycol, glycerol/glucose, and betaine/sorbitol/water. Therefore, by applying two green solvents, a sustainable approach for obtaining pure and high-quality S. montana extracts with extended stability at room temperature was established.


Subject(s)
Glycerol , Satureja , Solvents , Deep Eutectic Solvents , Carbon Dioxide , Betaine , Odorants , Montana , Plant Extracts
6.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240166

ABSTRACT

Thyroid diseases affect a considerable portion of the population, with hypothyroidism being one of the most commonly reported thyroid diseases. Levothyroxine (T4) is clinically used to treat hypothyroidism and suppress thyroid stimulating hormone secretion in other thyroid diseases. In this work, an attempt to improve T4 solubility is made through the synthesis of ionic liquids (ILs) based on this drug. In this context, [Na][T4] was combined with choline [Ch]+ and 1-(2-hydroxyethyl)-3-methylimidazolium [C2OHMiM] + cations in order to prepare the desired T4-ILs. All compounds were characterized by NMR, ATR-FTIR, elemental analysis, and DSC, aiming to check their chemical structure, purities, and thermal properties. The serum, water, and PBS solubilities of the T4-ILs were compared to [Na][T4], as well as the permeability assays. It is important to note an improved adsorption capacity, in which no significant cytotoxicity was observed against L929 cells. [C2OHMiM][T4] seems to be a good alternative to the commercial levothyroxine sodium salt with promising bioavailability.


Subject(s)
Ionic Liquids , Thyroxine , Thyroxine/chemical synthesis , Thyroxine/pharmacokinetics , Thyroxine/toxicity , Biological Availability , Solubility , Ionic Liquids/chemical synthesis , Ionic Liquids/pharmacokinetics , Ionic Liquids/toxicity , L Cells , Animals , Mice , Permeability
7.
Pharmaceutics ; 15(5)2023 May 21.
Article in English | MEDLINE | ID: mdl-37242795

ABSTRACT

The major goal of this work was to study the potential of natural deep eutectic systems (NADES) as new media for ocular formulations. In formulating eye drops, it is important to increase the retention time of the drug on the surface of eye; hence, due to their high viscosity, NADES may be interesting candidates for formulation. Different systems composed of combinations of sugars, polyols, amino acids, and choline derivatives were prepared and then characterized in terms of rheological and physicochemical properties. Our results showed that 5-10% (w/v) aqueous solutions of NADES have a good profile in terms of viscosity (0.8 to 1.2 mPa.s), osmolarity (412 to 1883 mOsmol), and pH (7.4) for their incorporation of ocular drops. Additionally, contact angle and refractive index were determined. Acetazolamide (ACZ), a highly insoluble drug used to treat glaucoma, was used as proof-of-concept. Herein, we show that NADES can increase the solubility of ACZ in aqueous solutions by at least up to 3 times, making it useful for the formulation of ACZ into ocular drops and thereby enabling more efficient treatment. The cytotoxicity assays demonstrated that NADES are biocompatible up to 5% (w/v) in aqueous media, promoting cell viability (above 80%) when compared to the control after 24 h incubation in ARPE-19 cells. Furthermore, when ACZ is dissolved in aqueous solutions of NADES, the cytotoxicity is not affected in this range of concentrations. Although further studies are necessary to design an optimal formulation incorporating NADES, this study shows that these eutectics can be powerful tools in the formulation of ocular drugs.

8.
Molecules ; 28(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175099

ABSTRACT

Biopolymers such as chitosan (CHT) or alginate (ALG) are among the most prominent for health-related applications due to their broad bioactivity. Their combination for the preparation of membranes is hereby proposed as an application for wound healing with the incorporation of lavender essential oil (LEO), widely known for its antioxidant and antimicrobial properties. The preparation of CHT, CHT + LEO, ALG, ALG + LEO, and CHT/ALG + LEO membranes was accomplished, and its composition was analyzed using Fourier Transform Infrared Spectroscopy (FTIR). The water absorption capacity and oil release profile of the membranes revealed higher water uptake capacity when a lower LEO release was obtained. The combined CHT/ALG + LEO film showed a water uptake percentage of 638% after 48 h and a maximum LEO release concentration of 42 mg/L. Cytotoxicity and biocompatibility of the prepared membranes were studied using a HaCaT cell line, with an assessment of cell viability regarding film leachables, DNA quantification, and DAPI-phalloidin staining. The results revealed that the indirect contact of the prepared membranes via its leachables does not compromise cell viability, and upon direct contact, cells do not adhere or proliferate on the surface of the membranes. Moreover, the CHT/ALG + LEO membrane increases cell proliferation, making it suitable for applications in wound healing.


Subject(s)
Chitosan , Chitosan/chemistry , Alginates/chemistry , Wound Healing , Water
9.
Int J Pharm ; 637: 122862, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36965645

ABSTRACT

Therapeutic liquid mixtures, as deep eutectic systems, are considered a sustainable strategy that can be useful for the modification and enhancement of the pharmacokinetics and pharmacodynamics of different active ingredients. In this study, we assessed the stability and antibacterial activity of therapeutic liquid formulations prepared with anti-tuberculosis drugs. Tuberculosis therapy presents various pitfalls related, for example, to the administration of prolonged regimens of multiple drugs, different severe adverse effects, low compliance of the patient to treatment and the development of drug resistance. During this study, it was possible to assess the physicochemical stability of the formulations for 6 months, by polarized optical microscopy, 1H NMR and FTIR-ATR. Furthermore, the mixtures present an antibacterial effect against a drug-susceptible Mycobacterium tuberculosis strain (H37Rv). This was particularly evident for the mixtures with ethambutol incorporated, making them interesting to pursue with further studies and evaluation of clinical applicability. Upon infection, it was also observed that a single and higher dose appears to be more effective than lower separate doses, which could allow the production of patient-friendly formulations.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Tuberculosis/drug therapy , Antitubercular Agents/pharmacology , Ethambutol/chemistry , Ethambutol/pharmacology , Ethambutol/therapeutic use
10.
Eur J Pharm Sci ; 182: 106368, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36572356

ABSTRACT

Effective antimicrobial treatment has been identified as a serious and unmet medical need. Herein, we present a strategy based on deep eutectic systems (DES) to overcome current limitations, answering the need not only to effectively kill bacterial agents but also to avoid their adhesion and proliferation, which is associated with biofilm formation and have a crucial impact on bacterial virulence. To achieve such a goal, natural deep eutectic systems (NADES) based on menthol (Me) and saturated free fatty acids (FFA) were produced, fully physicochemical characterized, and its bioactive properties were described. The antimicrobial potential of menthol-based NADES with FFA, namely, myristic acid (MA), lauric acid (LA), and stearic acid (SA) were investigated towards a broad panel of microorganisms. The obtained data indicates that NADES possess effective antimicrobial properties towards the Gram-positive bacterial and fungal strains tested. Among the tested formulations, Me:LA at a molar ratio of 4:1 molar was used to carry out a biofilm detachment/removal assay due to is superior microbiological properties. This formulation was able to effectively lead to biofilm removal/dispersion of not only methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans, but also Escherichia coli, without the need of any additional physical force or antibiotic. Furthermore, since microbial invasion and biofilm formation is highly undesired in wound healing, namely in chronic wound healing, the wound healing properties of these eutectic formulations was also investigated. The results suggest that these NADES can cope with microbial invasion and biofilm detachment while not compromising normal keratinocyte proliferation and migration verified in wound healing and epidermis repair, while also contributing to the reduction of cell stress and inflammation via the control of ROS production. In conclusion, these results provide the indication that NADES based on Me and FFA holds great interest as antimicrobial agents for preventive and therapeutic applications in various clinical settings, including wound healing.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Menthol/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents , Wound Healing
11.
Phys Chem Chem Phys ; 25(1): 439-454, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36477262

ABSTRACT

The choline chloride-urea binary mixture in the molar ratio (1 : 2), commonly known as reline, is an archetypal solvent among deep eutectic solvents (DES). Neutron diffraction (ND) and empirical potential structure refinement (EPSR) results provided evidence that reline exhibits a peculiar structural transformation upon water addition that manifests in a sudden dewetting of the choline cations at ∼51 wt% water and, therefore, a non-monotonic variation of the choline-water and choline-choline coordination. Here, we study, through molecular dynamics (MD), the influence of water on the structure of a choline chloride : urea : water DES (1 : 2 : ζ; ζ = 0 to 40), to gain additional insight into the molecular source of this peculiar structural transformation. Five different force fields were investigated. Our results show that the ND/EPSR non-monotonic behavior of the choline-choline coordination is qualitatively reproduced by those force fields that describe more accurately the dynamics of the DES, namely, the diffusion and viscosity coefficients. However, the apparent increase of the choline-choline coordination at ζ > 10 (41 wt%) is associated with the drain of a particular first coordination sphere, rather than with a dewetting of the choline cations, as predicted by ND/EPSR. Thus, a monotonic increase of the choline-water coordination is found instead, as well as the emergence of a tetrahedral hydrogen bond network of water, opposite to ND/EPSR. The highest rate of depletion upon initial hydration is found for urea around choline (∼0.9 urea molecules/ζ), whereas choline depicts the highest rate of hydration (∼2.5 water molecules/ζ). These rates decrease with ζ and a structural transition that stabilizes above 41 wt% is observed, consistent with ND/EPSR results. Despite limitations in the force fields, we argue that the experimental and simulation opposite pictures could be related to an underestimation of water's hydrogen bond network portrayed by the EPSR method. Overall, a smoother transition from a DES to an aqueous solution of the DES components is portrayed by MD, compared with ND/EPSR.


Subject(s)
Choline , Water , Water/chemistry , Choline/chemistry , Urea/chemistry , Solvents/chemistry , Cations
12.
ACS Sustain Chem Eng ; 10(38): 12873-12881, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36573121

ABSTRACT

To validate the use of horseradish peroxidase (HRP) in natural deep eutectic systems (NADES), five different betaine-based NADES were characterized in terms of water content, water activity, density, and viscosity experimentally and by thermodynamic modeling. The results show that the NADES under study have a water activity of about 0.4 at 37 °C for water contents between 14 and 22 wt %. The densities of the studied NADES had values between 1.2 and 1.3 g.cm-3 at 20 °C. The density was modeled with a state-of-the-art equation of state; an excellent agreement with the experimental density data was achieved, allowing reasonable predictions for water activities. The system betaine:glycerol (1:2) was found to be the most viscous with a dynamic viscosity of ∼600 mPa.s at 40 °C, while all the other systems had viscosities <350 mPa.s at 40 °C. The impact of the NADES on the enzymatic activity, as well as on, conformational and thermal stability was assessed. The system betaine/sorbitol:water (1:1:3) showed the highest benefit for enzymatic activity, increasing it by two-folds. Moreover, upon NADES addition, thermal stability was increased followed by an increment in a-helix secondary structure content.

13.
Molecules ; 27(15)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35956845

ABSTRACT

Deep eutectic solvents (DES) are an important class of green solvents that have been developed as an alternative to toxic solvents. However, the large-scale industrial application of DESs requires fine-tuning their physicochemical properties. Among others, surface tension is one of such properties that have to be considered while designing novel DESs. In this work, we present the results of a detailed evaluation of Quantitative Structure-Property Relationships (QSPR) modeling efforts designed to predict the surface tension of DESs, following the Organization for Economic Co-operation and Development (OECD) guidelines. The data set used comprises a large number of structurally diverse binary DESs and the models were built systematically through rigorous validation methods, including 'mixtures-out'- and 'compounds-out'-based data splitting. The most predictive individual QSPR model found is shown to be statistically robust, besides providing valuable information about the structural and physicochemical features responsible for the surface tension of DESs. Furthermore, the intelligent consensus prediction strategy applied to multiple predictive models led to consensus models with similar statistical robustness to the individual QSPR model. The benefits of the present work stand out also from its reproducibility since it relies on fully specified computational procedures and on publicly available tools. Finally, our results not only guide the future design and screening of novel DESs with a desirable surface tension but also lays out strategies for efficiently setting up silico-based models for binary mixtures.


Subject(s)
Deep Eutectic Solvents , Quantitative Structure-Activity Relationship , Reproducibility of Results , Solvents/chemistry , Surface Tension
14.
Molecules ; 27(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36014405

ABSTRACT

The development of novel pharmaceutical tools to efficiently tackle tuberculosis is the order of the day due to the rapid development of resistant strains of Mycobacterium tuberculosis. Herein, we report novel potential formulations of a repurposed drug, the antimalarial mefloquine (MFL), which was combined with organic anions as chemical adjuvants. Eight mefloquine organic salts were obtained by ion metathesis reaction between mefloquine hydrochloride ([MFLH][Cl]) and several organic acid sodium salts in high yields. One of the salts, mefloquine mesylate ([MFLH][MsO]), presented increased water solubility in comparison with [MFLH][Cl]. Moreover, all salts with the exception of mefloquine docusate ([MFLH][AOT]) showed improved permeability and diffusion through synthetic membranes. Finally, in vitro activity studies against Mycobacterium tuberculosis revealed that these ionic formulations exhibited up to 1.5-times lower MIC values when compared with [MFLH][Cl], particularly mefloquine camphorsulfonates ([MFLH][(1R)-CSA], [MFLH][(1S)-CSA]) and mefloquine HEPES ([MFLH][HEPES]).


Subject(s)
Antimalarials , Mycobacterium tuberculosis , Antimalarials/pharmacology , HEPES , Mefloquine/pharmacology , Permeability , Salts , Solubility
15.
Front Chem ; 10: 954835, 2022.
Article in English | MEDLINE | ID: mdl-36034659

ABSTRACT

Rosemary (Rosmarinus officinalis) is a natural source of bioactive compounds that have high antioxidant activity. It has been in use as a medicinal herb since ancient times, and it currently is in widespread use due to its inherent pharmacological and therapeutic potential, in the pharmaceutical, food, and cosmetic industries. Natural deep eutectic systems (NADESs) have recently been considered as suitable extraction solvents for bioactive compounds, with high solvent power, low toxicity, biodegradability, and low environmental impact. The present work concerns the extraction of compounds such as rosmarinic acid, carnosol, carnosic acid, and caffeic acid, from rosemary using NADESs. This extraction was carried out using heat and stirring (HS) and ultrasound-assisted extraction (UAE). A NADES composed of menthol and lauric acid at a molar ratio of 2:1 (Me:Lau) extracted carnosic acid and carnosol preferentially, showing that this NADES exhibits selectivity for nonpolar compounds. On the other hand, a system of lactic acid and glucose (LA:Glu (5:1)) extracted preferentially rosmaniric acid, which is a more polar compound. Taking advantage of the different polarities of these NADESs, a simultaneous extraction was carried out, where the two NADESs form a biphasic system. The system LA:Glu (5:1)/Men:Lau (2:1) presented the most promising results, reaching 1.00 ± 0.12 mg of rosmarinic acid/g rosemary and 0.26 ± 0.04 mg caffeic acid/g rosemary in the more polar phase and 2.30 ± 0.18 mg of carnosol/g of rosemary and 17.54 ± 1.88 mg carnosic acid/g rosemary in the nonpolar phase. This work reveals that is possible to use two different systems at the same time and extract different compounds in a single-step process under the same conditions. NADESs are also reported to stabilize bioactive compounds, due to their interactions established with NADES components. To determine the stability of the extracts over time, the compounds of interest were quantified by HPLC at different time points. This allows the conclusion that bioactive compounds from rosemary were stable in NADESs for long periods of time; in particular, carnosic acid presented a decrease of only 25% in its antioxidant activity after 3 months, whereas the carnosic acid extracted and kept in the methanol was no longer detected after 15 days. The stabilizing ability of NADESs to extract phenolic/bioactive compounds shows a great promise for future industrial applications.

16.
Front Chem ; 10: 909485, 2022.
Article in English | MEDLINE | ID: mdl-36017164

ABSTRACT

Having been introduced in 2003, Deep Eutectic Solvents (DESs) make up a most recent category of green solvents. Due to their unique characteristics, and also their tunable physical properties, DESs have shown high potentials for use in various applications. One of the investigated applications is CO2 absorption. The thermodynamic modeling of CO2 solubility in DESs has been pursued by a number of researchers to estimate the capacity and capability of DESs for such tasks. Among the advanced equations of state (EoSs), the Perturbed Chain-Statistical Associating Fluid Theory (PC-SAFT) is a well-known EoS. In this study, the performance of the PC-SAFT EoS for estimating CO2 solubility in various DESs, within wide ranges of temperatures and pressures, was investigated. A large data bank, including 2542 CO2 solubility data in 109 various-natured DESs was developed and used for this study. This is currently the most comprehensive study in the open literature on CO2 solubility in DESs using an EoS. For modeling, the DES was considered as a pseudo-component with a 2B association scheme. CO2 was considered as both an inert and a 2B-component and the results of each association scheme were compared. Considering the very challenging task of modeling a complex hydrogen bonding mixture with gases, the results of AARD% being lower than 10% for both of the investigated association schemes of CO2, showed that PC-SAFT is a suitable model for estimating CO2 solubilities in various DESs. Also, by proposing generalized correlations to predict the PC-SAFT parameters, covering different families of DESs, the developed model provides a global technique to estimate CO2 solubilities in new and upcoming DESs, avoiding the necessity of further experimental work. This can be most valuable for screening and feasibility studies to select potential DESs from the innumerable options available.

17.
Front Chem ; 10: 937036, 2022.
Article in English | MEDLINE | ID: mdl-35783202

ABSTRACT

The disposal of large amounts of skin waste resulting from the blue shark fishing industry presents several industrial and environmental waste management concerns. In addition, these marine subproducts are interesting sources of collagen, a fibrous protein that shows high social and economic interest in a broad range of biomedical, pharmaceutical, and cosmetic applications. However, blue shark wasted skins are a poorly explored matrix for this purpose, and conventional collagen recovery methodologies involve several pre-treatment steps, long extraction times and low temperatures. This work presents a new green and sustainable collagen extraction approach using a natural deep eutectic solvent composed of citric acid:xylitol:water at a 1:1:10 molar ratio, and the chemical characterization of the extracted collagen by discontinuous electrophoresis, thermogravimetric analysis, Fourier transformed infrared spectroscopy and circular dichroism. The extracted material was a pure type I collagen, and the novel approach presented an extraction yield 2.5 times higher than the conventional one, without pre-treatment of raw material and reducing the procedure time from 96 to 1 h. Furthermore, the in vitro cytotoxicity evaluation, performed with a mouse fibroblasts cell line, has proven the biocompatibility of the extracted material. Overall, the obtained results demonstrate a simple, quick, cheap and environmentally sustainable process to obtain marine collagen with promising properties for biomedical and cosmetic applications.

19.
Sci Rep ; 12(1): 8095, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35577888

ABSTRACT

In this work we present the potential of Natural Deep Eutectic Systems (NADES) as new vitrification media for the cryopreservation of mammalian cells. Several NADES composed of natural metabolites were prepared and tested as CPAs in two cell lines, L929 and HacaT cells. After the harvesting, cells were mixed with the eutectic systems, and frozen directly into liquid nitrogen to achieve a vitreous state. Then, the cells were thawed and it was observed that NADES were able to exert a significant cryoprotective effect in L929 cells, when compared with DMSO or in the absence of a CPA. For HacaT cells, only a eutectic system showed a slightly improvement in cell survival, while DMSO caused complete cell death. Moreover, the thermal behaviour of the best systems was studied for further understanding the protective properties of NADES as CPAs, and have shown a significant difference in terms of Tm and Tc when compared with DMSO and water. Additionally, the results obtained showed that NADES can be maintained in the growth media after the thawing step, without compromising cell viability. In summary, we have shown the great potential of NADES to be used as CPAs for the cryopreservation of different cell types, using the vitrification method.


Subject(s)
Cryoprotective Agents , Vitrification , Animals , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Dimethyl Sulfoxide/pharmacology , HaCaT Cells , Humans , Mice
20.
Front Nutr ; 9: 892314, 2022.
Article in English | MEDLINE | ID: mdl-35586733

ABSTRACT

The increasing demand for medical cannabis urges the development of new and effective methods for the extraction of phytocannabinoids. Deep eutectic solvents (DESs) are an alternative to the use of hazardous organic solvents typically used in the industry. In this study, hydrophilic and hydrophobic DESs were developed based on terpenes, sugars, and natural organic acids as green extraction media for the extraction of cannabis bioactive compounds. The factors influencing the extraction of bioactive components, such as the type of DESs and extraction time, were investigated. Initial screening in hemp showed that the DES composed of Men: Lau (a 2:1-M ratio) had a greater extraction efficiency of cannabidiol (CBD) and cannabidiolic acid (CBDA) (11.07 ± 0.37 mg/g) of all the tested DESs and higher than ethanol. Besides having a higher or equivalent extraction yield as the organic solvents tested, DESs showed to be more selective, extracting fewer impurities, such as chlorophyll and waxes. These results, coupled with the non-toxic, biodegradable, low-cost, and environmentally friendly characteristics of DESs, provide strong evidence that DESs represent a better alternative to organic solvents.

SELECTION OF CITATIONS
SEARCH DETAIL
...