Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells Dev ; 175: 203860, 2023 09.
Article in English | MEDLINE | ID: mdl-37270067

ABSTRACT

Peroxiredoxins (Prdxs) are thiol-dependent enzymes that scavenge peroxides. Previously, we found that Prdxs were hyperoxidized in a Parkinson's disease model induced by paraquat (PQ), which led to their inactivation, perpetuating reactive oxygen species (ROS) formation. Herein, we evaluated the redox state of the typical 2-Cys-Prx subgroup. We found that PQ induces ROS compartmentalization in different organelles, reflected by the 2-Cys-Prdx hyperoxidation pattern detected by redox eastern blotting. 2-Cys Prdxs are most vulnerable to hyperoxidation, while atypical 2-Cys Peroxiredoxin 5 (Prdx5) is resistant and is expressed in multiple organelles, such as mitochondria, peroxisomes, and cytoplasm. Therefore, we overexpressed human Prdx5 in the dopaminergic SHSY-5Y cell line using the adenoviral vector Ad-hPrdx5. Prdx5 overexpression was confirmed by western blotting and immunofluorescence (IF) and effectively decreased PQ-mediated mitochondrial and cytoplasmic ROS assessed with a mitochondrial superoxide indicator and DHE through IF or flow cytometry. Decreased ROS mediated by Prdx5 in the main subcellular compartments led to overall cell protection against PQ-induced cell death, which was demonstrated by flow cytometry using Annexin V labeling and 7-AAD. Therefore, Prdx5 is an attractive therapeutic target for PD, as its overexpression protects dopaminergic cells from ROS and death, which warrants further experimental animal studies for its subsequent application in clinical trials.


Subject(s)
Oxidative Stress , Paraquat , Animals , Humans , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/pharmacology , Paraquat/pharmacology , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Peroxiredoxins/pharmacology , Cell Death/genetics
2.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674772

ABSTRACT

Biometals are all metal ions that are essential for all living organisms. About 40% of all enzymes with known structures require biometals to function correctly. The main target of damage by biometals is the central nervous system (CNS). Biometal dysregulation (metal deficiency or overload) is related to pathological processes. Chronic occupational and environmental exposure to biometals, including iron and copper, is related to an increased risk of developing Parkinson's disease (PD). Indeed, biometals have been shown to induce a dopaminergic neuronal loss in the substantia nigra. Although the etiology of PD is still unknown, oxidative stress dysregulation, mitochondrial dysfunction, and inhibition of both the ubiquitin-proteasome system (UPS) and autophagy are related to dopaminergic neuronal death. Herein, we addressed the involvement of redox-active biometals, iron, and copper, as oxidative stress and neuronal death inducers, as well as the current metal chelation-based therapy in PD.


Subject(s)
Parkinson Disease , Trace Elements , Humans , Parkinson Disease/pathology , Copper , Metals , Iron , Oxidative Stress , Oxidation-Reduction , Dopaminergic Neurons/pathology , Chelating Agents/pharmacology , Chelating Agents/therapeutic use
3.
Antioxidants (Basel) ; 10(3)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33803945

ABSTRACT

Oxidative stress is considered one of the pathological mechanisms that cause Parkinson's disease (PD), which has led to the investigation of several antioxidants molecules as a potential therapeutic treatment against the disease. Although preclinical studies have demonstrated the efficacy of these compounds to maintain neuronal survival and activity in PD models, these results have not been reflected in clinical trials, antioxidants have not been able to act as disease modifiers in terms of clinical symptoms. Translational medicine currently faces the challenge of redesigning clinical trials to standardize criteria when testing molecules to reduce responses' variability. Herein, we discuss current challenges and opportunities regarding several non-enzymatic antioxidants' therapeutic molecules for PD patients' potential treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...