Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Photodiagnosis Photodyn Ther ; 45: 103906, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042235

ABSTRACT

Tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis, is highly contagious and can lead to severe health complications if left untreated. This review article discusses the importance of early detection and treatment and its global incidence and epidemiology, emphasizing its impact on vulnerable populations and its role as a major cause of death worldwide. Furthermore, it highlights the challenges faced with diagnosing TB. To overcome these challenges, point-of-care devices have emerged as promising tools for rapid and accurate TB detection. These include devices such as nucleic acid amplification tests (NAATs), lateral flow assays (LFAs), and microfluidic-based assays, which offer advantages such as rapid results, portability, and the ability to detect drug-resistant strains. Optical-based devices, such as photonic micro-ring sensors, silicon platform-based sensors, plasmonic-based platforms, microfluidics, and smartphone imaging, are some of the highlighted optical-based devices with the potential to detect TB. These devices can detect TB in sputum samples with high sensitivity and specificity. Optical-based diagnostic devices have the potential to offer the advantages of detecting low concentrations of target molecules and being adaptable to detect multiple targets simultaneously. Using these devices in a clinical setting makes them suitable for their application in improving access to diagnostic testing that enables earlier detection and treatment of TB. Furthermore, these devices would improve TB's global health issue, which requires comprehensive research, prevention, and treatment efforts.


Subject(s)
Optical Devices , Photochemotherapy , Tuberculosis , Humans , Photochemotherapy/methods , Photosensitizing Agents , Tuberculosis/diagnosis , Head
2.
Microb Genom ; 9(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37917136

ABSTRACT

Due to the emergence of non-vaccine serotypes in vaccinated populations, Streptococcus pneumoniae remains a major global health challenge despite advances in vaccine development. Serotype 16F is among the predominant non-vaccine serotypes identified among vaccinated infants in South Africa (SA). To characterize lineages and antimicrobial resistance in 16F isolates obtained from South Africa and place the local findings in a global context, we analysed 10 923 S. pneumoniae carriage isolates obtained from infants recruited as part of a broader SA birth cohort. We inferred serotype, resistance profile for penicillin, chloramphenicol, cotrimoxazole, erythromycin and tetracycline, and global pneumococcal sequence clusters (GPSCs) from genomic data. To ensure global representation, we also included S. pneumoniae carriage and disease isolates from the Global Pneumococcal Sequencing (GPS) project database (n=19 607, collected from 49 countries across 5 continents, 1995-2018, accessed 17 March 2022). Nine per cent (934/10923) of isolates obtained from infants in the Drakenstein community in SA and 2 %(419/19607) of genomes in the GPS dataset were serotype 16F. Serotype 16F isolates were from 28 different lineages of S. pneumoniae, with GPSC33 and GPSC46 having the highest proportion of serotype 16F isolates at 26 % (346/1353) and 53 % (716/1353), respectively. Serotype 16F isolates were identified globally, but most isolates were collected from Africa. GPSC33 was associated with carriage [OR (95 % CI) 0.24 (0.09-0.66); P=0.003], while GPSC46 was associated with disease [OR (95 % CI) 19.9 (2.56-906.50); P=0.0004]. Ten per cent (37/346) and 15 % (53/346) of isolates within GPSC33 had genes associated with resistance to penicillin and co-trimoxazole, respectively, and 18 % (128/716) of isolates within GPSC46 had genes associated with resistance to co-trimoxazole. Resistant isolates formed genetic clusters, which may suggest emerging resistant lineages. Serotype 16F lineages were common in southern Africa. Some of these lineages were associated with disease and resistance to penicillin and cotrimoxazole. We recommend continuous genomic surveillance to determine the long-term impact of serotype 16F lineages on vaccine efficacy and antimicrobial therapy globally. Investing in vaccine strategies that offer protection over a wide range of serotypes/lineages remains essential. This paper contains data hosted by Microreact.


Subject(s)
Streptococcus pneumoniae , Trimethoprim, Sulfamethoxazole Drug Combination , Infant , Humans , Streptococcus pneumoniae/genetics , Serogroup , Genomics , Anti-Bacterial Agents/pharmacology , South Africa/epidemiology , Penicillins , Pneumococcal Vaccines
3.
bioRxiv ; 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37693504

ABSTRACT

Introduction: Due to the emergence of non-vaccine serotypes in vaccinated populations, Streptococcus pneumoniae remains a major global health challenge despite advances in vaccine development. Serotype 16F is among the predominant non-vaccine serotypes identified among vaccinated infants in South Africa (SA). Aim: To characterise lineages and antimicrobial resistance in 16F isolates obtained from South Africa and placed the local findings in a global context. Methodology: We analysed 10923 S. pneumoniae carriage isolates obtained from infants recruited as part of a broader SA birth cohort. We inferred serotype, resistance profile for penicillin, chloramphenicol, cotrimoxazole, erythromycin and tetracycline, and Global Pneumococcal Sequence Clusters (GPSCs) from genomic data. To ensure global representation, we also included S. pneumoniae carriage and disease isolates from the Global Pneumococcal Sequencing (GPS) project database (n=19,607, collected from 49 countries across five continents, years covered (1995 - 2018), accessed on 17 th March 2022). Results: Nine percent (934/10923) of isolates obtained from infants in the Drakenstein community in SA and 2% (419/19607) of genomes in the GPS dataset were serotype 16F. Serotype 16F isolates were from 28 different lineages of S. pneumoniae, with GPSC33 and GPSC46 having the highest proportion of serotype 16F isolates at 26% (346/1353) and 53% (716/1353), respectively. Serotype 16F isolates were identified globally, however, most isolates were collected from Africa. GPSC33 was associated with carriage [OR (95% CI) 0.24 (0.09 - 0.66); p=0.003], while GPSC46 was associated with disease [OR (95% CI) 19.9 (2.56 - 906.50); p=0.0004]. 10% (37/346) and 15% (53/346) of isolates within GPSC33 had genes associated with resistance to penicillin and co-trimoxazole, respectively, and 18% (128/716) of isolates within GPSC46 had genes associated with resistance to co-trimoxazole. Resistant isolates formed genetic clusters which may suggest emerging resistant lineages. Discussion: Serotype 16F lineages are common in Southern Africa. Some of these lineages are associated with disease, and resistance to penicillin and cotrimoxazole. We recommend continuous genomic surveillance to determine long term impact of serotype 16F lineages on vaccine efficacy and antimicrobial therapy globally. Investing in vaccine strategies that offer protection over a wide range of serotypes/lineages remains essential. DATA SUMMARY: The sequencing reads for the genomes analysed have been deposited in the European Nucleotide Archive and the accession numbers for each isolate are listed in Supplementary Table1 . Phylogenetic tree of serotype 16F pneumococcal genomes and associated metadata are available for download and visualisation on the Microreact website: Phylogenies of seotype 16F, GPSC33 and GPSC46 are available on the Microreact serotype-16F , GPSC33 and GPSC46 , respectively. IMPACT STATEMENT: This study shows that serotype 16F lineages are predominant in Southern Africa and are associated with disease and antimicrobial resistance. Although serotype 16F has been included in the newer formulation of the upcoming vaccine formulations of PCV21 and IVT-25, continuous surveillance to determine long term impact of serotype 16F lineages on vaccines and antimicrobial therapy remains essential.

4.
Microbiome ; 11(1): 29, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36803868

ABSTRACT

BACKGROUND: Long-term azithromycin (AZM) treatment reduces the frequency of acute respiratory exacerbation in children and adolescents with HIV-associated chronic lung disease (HCLD). However, the impact of this treatment on the respiratory bacteriome is unknown. METHOD: African children with HCLD (defined as forced expiratory volume in 1 s z-score (FEV1z) less than - 1.0 with no reversibility) were enrolled in a placebo-controlled trial of once-weekly AZM given for 48-weeks (BREATHE trial). Sputum samples were collected at baseline, 48 weeks (end of treatment) and 72 weeks (6 months post-intervention in participants who reached this timepoint before trial conclusion). Sputum bacterial load and bacteriome profiles were determined using 16S rRNA gene qPCR and V4 region amplicon sequencing, respectively. The primary outcomes were within-participant and within-arm (AZM vs placebo) changes in the sputum bacteriome measured across baseline, 48 weeks and 72 weeks. Associations between clinical or socio-demographic factors and bacteriome profiles were also assessed using linear regression. RESULTS: In total, 347 participants (median age: 15.3 years, interquartile range [12.7-17.7]) were enrolled and randomised to AZM (173) or placebo (174). After 48 weeks, participants in the AZM arm had reduced sputum bacterial load vs placebo arm (16S rRNA copies/µl in log10, mean difference and 95% confidence interval [CI] of AZM vs placebo - 0.54 [- 0.71; - 0.36]). Shannon alpha diversity remained stable in the AZM arm but declined in the placebo arm between baseline and 48 weeks (3.03 vs. 2.80, p = 0.04, Wilcoxon paired test). Bacterial community structure changed in the AZM arm at 48 weeks compared with baseline (PERMANOVA test p = 0.003) but resolved at 72 weeks. The relative abundances of genera previously associated with HCLD decreased in the AZM arm at 48 weeks compared with baseline, including Haemophilus (17.9% vs. 25.8%, p < 0.05, ANCOM ω = 32) and Moraxella (1% vs. 1.9%, p < 0.05, ANCOM ω = 47). This reduction was sustained at 72 weeks relative to baseline. Lung function (FEV1z) was negatively associated with bacterial load (coefficient, [CI]: - 0.09 [- 0.16; - 0.02]) and positively associated with Shannon diversity (0.19 [0.12; 0.27]). The relative abundance of Neisseria (coefficient, [standard error]: (2.85, [0.7], q = 0.01), and Haemophilus (- 6.1, [1.2], q < 0.001) were positively and negatively associated with FEV1z, respectively. An increase in the relative abundance of Streptococcus from baseline to 48 weeks was associated with improvement in FEV1z (3.2 [1.11], q = 0.01) whilst an increase in Moraxella was associated with decline in FEV1z (-2.74 [0.74], q = 0.002). CONCLUSIONS: AZM treatment preserved sputum bacterial diversity and reduced the relative abundances of the HCLD-associated genera Haemophilus and Moraxella. These bacteriological effects were associated with improvement in lung function and may account for reduced respiratory exacerbations associated with AZM treatment of children with HCLD. Video Abstract.


Subject(s)
HIV Infections , Lung Diseases , Adolescent , Humans , Child , Azithromycin/therapeutic use , Anti-Bacterial Agents/therapeutic use , Sputum/microbiology , Bacterial Load , RNA, Ribosomal, 16S/genetics , Lung Diseases/drug therapy , Bacteria/genetics , Haemophilus , Moraxella , Lung/microbiology , HIV Infections/complications , HIV Infections/drug therapy
5.
PLoS One ; 17(3): e0265326, 2022.
Article in English | MEDLINE | ID: mdl-35298533

ABSTRACT

BACKGROUND: Skin colonization with coagulase-negative staphylococci (CoNS) is generally beneficial, but recent investigations suggest its association with flares and atopic dermatitis (AD) severity. However, this relationship remains unclear. OBJECTIVE: To assess patterns of staphylococcal colonization and biofilm formation in toddlers with and without AD from rural and urban South African settings. METHODS: We conducted a cross-sectional study of AD-affected and non-atopic AmaXhosa toddlers from rural Umtata and urban Cape Town, South Africa. CoNS isolates were recovered from lesional, nonlesional skin samples and the anterior nares of participants. Identification of the staphylococci was achieved by MALDI-TOF mass spectrometry. The microtiter plate assay assessed in-vitro biofilm formation. RESULTS: CoNS and S. aureus commonly co-colonized nonlesional skin among cases (urban: 24% vs. 3%, p = 0.037 and rural 21% vs. 6%, p<0.001), and anterior nares in urban cases (24% vs. 0%, p = 0.002) than the control group. S. capitis colonization on nonlesional skin and anterior nares was positively associated with more severe disease in rural (48.3±10.8 vs. 39.7±11.5, P = 0.045) and urban cases (74.9±10.3 vs. 38.4±13, P = 0.004), respectively. Biofilm formation was similar between cases and controls, independent of rural-urban living. CONCLUSION: CoNS colonization is associated with AD and disease severity and may be implicated in AD exacerbations. Studies are needed to understand their underlying pathological contribution in AD pathogenesis.


Subject(s)
Dermatitis, Atopic , Staphylococcal Infections , Child, Preschool , Coagulase , Cross-Sectional Studies , Dermatitis, Atopic/epidemiology , Dermatitis, Atopic/pathology , Humans , Skin/pathology , South Africa/epidemiology , Staphylococcus , Staphylococcus aureus
6.
ERJ Open Res ; 8(1)2022 Jan.
Article in English | MEDLINE | ID: mdl-35141318

ABSTRACT

Selection for resistance to azithromycin (AZM) and other antibiotics such as tetracyclines and lincosamides remains a concern with long-term AZM use for treatment of chronic lung diseases (CLD). We investigated the impact of 48 weeks of AZM on the carriage and antibiotic resistance of common respiratory bacteria among children with HIV-associated CLD. Nasopharyngeal (NP) swabs and sputa were collected at baseline, 48 and 72 weeks from participants with HIV-associated CLD randomised to receive weekly AZM or placebo for 48 weeks and followed post-intervention until 72 weeks. The primary outcomes were prevalence and antibiotic resistance of Streptococcus pneumoniae (SP), Staphylococcus aureus (SA), Haemophilus influenzae (HI) and Moraxella catarrhalis (MC) at these timepoints. Mixed-effects logistic regression and Fisher's exact test were used to compare carriage and resistance, respectively. Of 347 (174 AZM, 173 placebo) participants (median age 15 years (IQR 13-18), female 49%), NP carriage was significantly lower in the AZM (n=159) compared to placebo (n=153) arm for SP (18% versus 41%, p<0.001), HI (7% versus 16%, p=0.01) and MC (4% versus 11%, p=0.02); SP resistance to AZM (62% (18 out of 29) versus 13% (8 out of 63), p<0.0001) or tetracycline (60% (18 out of 29) versus 21% (13 out of 63), p<0.0001) was higher in the AZM arm. Carriage of SA resistant to AZM (91% (31 out of 34) versus 3% (1 out of 31), p<0.0001), tetracycline (35% (12 out of 34) versus 13% (4 out of 31), p=0.05) and clindamycin (79% (27 out of 34) versus 3% (1 out of 31), p<0.0001) was also significantly higher in the AZM arm and persisted at 72 weeks. Similar findings were observed for sputa. The persistence of antibiotic resistance and its clinical relevance for future infectious episodes requiring treatment needs further investigation.

7.
Immunology ; 164(3): 524-540, 2021 11.
Article in English | MEDLINE | ID: mdl-34129695

ABSTRACT

Tuberculosis presents a global health challenge, and tumour necrosis factor (TNF) signalling is required for host immunity against Mycobacterium tuberculosis (Mtb). TNF receptor shedding, however, compromises effective immunity by reducing bioactive TNF through the formation of inactive complexes. In this study, we first compared the effect of total soluble TNF receptors using a transgenic p55ΔNS /p75-/- murine strain on host protection during a low-dose aerosol Mtb H37Rv challenge. We report that the presence of membrane-bound TNFRp55 alone in the absence of TNFRp75 results in superior control of a primary Mtb infection where p55ΔNS /p75-/- hyperactive dendritic cells displayed an increased capacity to induce a hyperactive Mtb-specific CD4+ T-cell response. p55ΔNS /p75-/- dendritic cells expressed a higher frequency of MHCII and increased MFIs for both CD86 and MHCII, while CD4+ T cells had higher expression of CD44 and IFN-γ. Next, the relative contributions of soluble TNFRp55 and soluble TNFRp75 to host protection against either primary Mtb infection or during reactivation of latent tuberculosis were delineated by comparing the experimental outcomes of control C57BL/6 mice to transgenic p55ΔNS /p75-/- , p55ΔNS and p75-/- mouse strains. We found that soluble TNFRp55 is redundant for immune regulation during the chronic stages of a primary Mtb infection. However, TNFRp55 together with soluble TNFRp75 has a crucial role in immune regulation of reactivation of latent tuberculosis.


Subject(s)
Dendritic Cells/immunology , Mycobacterium tuberculosis/immunology , Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tuberculosis/immunology , Animals , Dendritic Cells/metabolism , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Transgenic , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type II/genetics , Tuberculosis/microbiology
8.
Genes Immun ; 22(5-6): 276-288, 2021 10.
Article in English | MEDLINE | ID: mdl-33993202

ABSTRACT

The prevalence and severity of dermatological conditions such as atopic dermatitis have increased dramatically during recent decades. Many of the factors associated with an altered risk of developing inflammatory skin disorders have also been shown to alter the composition and diversity of non-pathogenic microbial communities that inhabit the human host. While the most densely microbial populated organ is the gut, culture and non-culture-based technologies have revealed a dynamic community of bacteria, fungi, viruses and mites that exist on healthy human skin, which change during disease. In this review, we highlight some of the recent findings on the mechanisms through which microbes interact with each other on the skin and the signalling systems that mediate communication between the immune system and skin-associated microbes. In addition, we summarize the ongoing clinical studies that are targeting the microbiome in patients with skin disorders. While significant efforts are still required to decipher the mechanisms underpinning host-microbe communication relevant to skin health, it is likely that disease-related microbial communities, or Dermatypes, will help identify personalized treatments and appropriate microbial reconstitution strategies.


Subject(s)
Dermatitis, Atopic , Microbiota , Bacteria , Humans , Immune System , Skin
9.
BMC Infect Dis ; 21(1): 348, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33849482

ABSTRACT

BACKGROUND: Staphylococcus aureus has been associated with the exacerbation and severity of atopic dermatitis (AD). Studies have not investigated the colonisation dynamics of S. aureus lineages in African toddlers with AD. We determined the prevalence and population structure of S. aureus in toddlers with and without AD from rural and urban South African settings. METHODS: We conducted a study of AD-affected and non-atopic AmaXhosa toddlers from rural Umtata and urban Cape Town, South Africa. S. aureus was screened from skin and nasal specimens using established microbiological methods and clonal lineages were determined by spa typing. Logistic regression analyses were employed to assess risk factors associated with S. aureus colonisation. RESULTS: S. aureus colonisation was higher in cases compared to controls independent of geographic location (54% vs. 13%, p < 0.001 and 70% vs. 35%, p = 0.005 in Umtata [rural] and Cape Town [urban], respectively). Severe AD was associated with higher colonisation compared with moderate AD (86% vs. 52%, p = 0.015) among urban cases. Having AD was associated with colonisation in both rural (odds ratio [OR] 7.54, 95% CI 2.92-19.47) and urban (OR 4.2, 95% CI 1.57-11.2) toddlers. In rural toddlers, living in an electrified house that uses gas (OR 4.08, 95% CI 1.59-10.44) or utilises kerosene and paraffin (OR 2.88, 95% CI 1.22-6.77) for heating and cooking were associated with increased S. aureus colonisation. However, exposure to farm animals (OR 0.3, 95% CI 0.11-0.83) as well as living in a house that uses wood and coal (OR 0.14, 95% CI 0.04-0.49) or outdoor fire (OR 0.31, 95% CI 0.13-0.73) were protective. Spa types t174 and t1476, and t272 and t1476 were dominant among urban and rural cases, respectively, but no main spa type was observed among controls, independent of geographic location. In urban cases, spa type t002 and t442 isolates were only identified in severe AD, t174 was more frequent in moderate AD, and t1476 in severe AD. CONCLUSION: The strain genotype of S. aureus differed by AD phenotypes and rural-urban settings. Continued surveillance of colonising S. aureus lineages is key in understanding alterations in skin microbial composition associated with AD pathogenesis and exacerbation.


Subject(s)
Dermatitis, Atopic/pathology , Staphylococcal Infections/diagnosis , Staphylococcus aureus/isolation & purification , Child, Preschool , Cross-Sectional Studies , Dermatitis, Atopic/complications , Female , Genotype , Humans , Infant , Logistic Models , Male , Risk Factors , Rural Population , Severity of Illness Index , Skin/microbiology , South Africa/epidemiology , Staphylococcal Infections/complications , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Urban Population
10.
BMC Infect Dis ; 21(1): 216, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33632144

ABSTRACT

BACKGROUND: HIV-associated chronic lung disease (CLD) is common among children living with HIV (CLWH) in sub-Saharan Africa, including those on antiretroviral therapy (ART). However, the pathogenesis of CLD and its possible association with microbial determinants remain poorly understood. We investigated the prevalence, and antibiotic susceptibility of Streptococcus pneumoniae (SP), Staphylococcus aureus (SA), Haemophilus influenzae (HI), and Moraxella catarrhalis (MC) among CLWH (established on ART) who had CLD (CLD+), or not (CLD-) in Zimbabwe and Malawi. METHODS: Nasopharyngeal swabs (NP) and sputa were collected from CLD+ CLWH (defined as forced-expiratory volume per second z-score < - 1 without reversibility post-bronchodilation with salbutamol), at enrolment as part of a randomised, placebo-controlled trial of azithromycin (BREATHE trial - NCT02426112 ), and from age- and sex-matched CLD- CLWH. Samples were cultured, and antibiotic susceptibility testing was conducted using disk diffusion. Risk factors for bacterial carriage were identified using questionnaires and analysed using multivariate logistic regression. RESULTS: A total of 410 participants (336 CLD+, 74 CLD-) were enrolled (median age, 15 years [IQR = 13-18]). SP and MC carriage in NP were higher in CLD+ than in CLD- children: 46% (154/336) vs. 26% (19/74), p = 0.008; and 14% (49/336) vs. 3% (2/74), p = 0.012, respectively. SP isolates from the NP of CLD+ children were more likely to be non-susceptible to penicillin than those from CLD- children (36% [53/144] vs 11% [2/18], p = 0.036). Methicillin-resistant SA was uncommon [4% (7/195)]. In multivariate analysis, key factors associated with NP bacterial carriage included having CLD (SP: adjusted odds ratio (aOR) 2 [95% CI 1.1-3.9]), younger age (SP: aOR 3.2 [1.8-5.8]), viral load suppression (SP: aOR 0.6 [0.4-1.0], SA: 0.5 [0.3-0.9]), stunting (SP: aOR 1.6 [1.1-2.6]) and male sex (SA: aOR 1.7 [1.0-2.9]). Sputum bacterial carriage was similar in both groups (50%) and was associated with Zimbabwean site (SP: aOR 3.1 [1.4-7.3], SA: 2.1 [1.1-4.2]), being on ART for a longer period (SP: aOR 0.3 [0.1-0.8]), and hot compared to rainy season (SP: aOR 2.3 [1.2-4.4]). CONCLUSIONS: CLD+ CLWH were more likely to be colonised by MC and SP, including penicillin-non-susceptible SP strains, than CLD- CLWH. The role of these bacteria in CLD pathogenesis, including the risk of acute exacerbations, should be further studied.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , HIV Infections/microbiology , Lung Diseases/microbiology , Adolescent , Anti-Retroviral Agents/therapeutic use , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , Female , HIV Infections/drug therapy , HIV Infections/epidemiology , Humans , Lung Diseases/drug therapy , Lung Diseases/epidemiology , Malawi/epidemiology , Male , Microbiota , Nasopharynx/microbiology , Prevalence , Risk Factors , Zimbabwe/epidemiology
11.
Sci Rep ; 10(1): 16412, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33009451

ABSTRACT

Multiple potential pathogens are frequently co-detected among children with lower respiratory tract infection (LRTI). Evidence indicates that Bordetella pertussis has an important role in the aetiology of LRTI. We aimed to study the association between B. pertussis and other respiratory pathogens in children hospitalised with severe LRTI, and to assess clinical relevance of co-detection. Nasopharyngeal (NP) swabs and induced sputa (IS) were tested with a B. pertussis specific PCR; additionally, IS was tested for other pathogens using a multiplex PCR. We included 454 children, median age 8 months (IQR 4-18), 31 (7%) of whom tested positive for B. pertussis. Children with B. pertussis had more bacterial pathogens detected (3 versus 2; P < 0.001). While B. pertussis showed no association with most pathogens, it was independently associated with Chlamydia pneumoniae, Mycoplasma pneumoniae and parainfluenza viruses with adjusted risk ratios of 4.01 (1.03-15.64), 4.17 (1.42-12.27) and 2.13 (1.03-4.55), respectively. There was a consistent increased risk of severe disease with B. pertussis. Patterns indicated even higher risks when B. pertussis was co-detected with any of the three organisms although not statistically significant. Improving vaccine coverage against B. pertussis would impact not only the incidence of pertussis but also that of severe LRTI generally.


Subject(s)
Bordetella pertussis/isolation & purification , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Bordetella pertussis/genetics , Chlamydophila pneumoniae/genetics , Chlamydophila pneumoniae/isolation & purification , Female , Hospitalization , Humans , Incidence , Infant , Male , Multiplex Polymerase Chain Reaction/methods , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Respirovirus/genetics , Respirovirus/isolation & purification , Sputum/microbiology , Whooping Cough/microbiology
12.
Front Public Health ; 8: 543898, 2020.
Article in English | MEDLINE | ID: mdl-33072693

ABSTRACT

Background: There remains a significant proportion of deaths due to pneumococcal pneumonia in infants from low- and middle-income countries despite the marginal global declines recorded in the past decade. Monitoring changes in pneumococcal carriage is key to understanding vaccination-induced shifts in the ecology of carriage, patterns of antimicrobial resistance, and impact on health. We longitudinally investigated pneumococcal carriage dynamics in PCV-13 vaccinated infants by collecting nasopharyngeal (NP) samples at 2-weekly intervals from birth through the first year of life from 137 infants. As a proof of concept, 196 NP samples were retrieved from a subset of 23 infants to explore strain-level pneumococcal colonization patterns and associated antimicrobial-resistance determinants. These were selected on the basis of changes in serotype and antibiogram over time. NP samples underwent short-term enrichment for streptococci prior to total nucleic acid extraction and whole metagenome shotgun sequencing (WMGS). Reads were assembled and aligned to pneumococcal reference genomes for the extraction of pneumococcal and non-pneumococcal bacterial reads. Pneumococcal contigs were aligned to the Antibiotic Resistance Gene-ANNOTation database of acquired AMR genes. In silico pneumococcal capsular and multilocus sequence typing were performed. Results: Of the 196 samples sequenced, 174 had corresponding positive cultures for pneumococci, of which, 152 were assigned an in silico serotype. Metagenomic sequencing detected a single pneumococcal serotype in 85% (129/152), and co-colonization in 15% (23/152) of the samples. Twenty-two different pneumococcal serotypes were identified, with 15B/15C and 16F being the most common non-PCV13 serotypes, while 23F and 19A were the most common PCV13 serotypes. Twenty-six different sequence types (STs), including four novel STs were identified in silico. Mutations in the folA and folP genes, associated with cotrimoxazole resistance, were detected in 89% (87/98) of cotrimoxazole-non-susceptible pneumococci, as well as in the pbp1a and pbp2x genes, in penicillin non-susceptible ST705215B/15C isolates. Conclusions: Metagenomic sequencing of NP samples is a valuable culture-independent technique for a detailed evaluation of the pneumococcal component and resistome of the NP microbiome. This method allowed for the detection of novel STs, as well as co-colonization, with a predominance of non-PCV13 serotypes in this cohort. Forty-eight resistance genes, as well as mutations associated with resistance were detected, but the correlation with phenotypic non-susceptibility was lower than expected.


Subject(s)
Anti-Bacterial Agents , Pneumococcal Infections , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Humans , Infant , Metagenome , Pneumococcal Infections/epidemiology , Streptococcus pneumoniae/genetics
13.
PLoS One ; 15(10): e0240717, 2020.
Article in English | MEDLINE | ID: mdl-33057415

ABSTRACT

INTRODUCTION: Despite a resurgence of disease, risk factors for pertussis in children in low and middle-income countries are poorly understood. This study aimed to investigate risk factors for pertussis disease in African children hospitalized with severe LRTI. METHODS: A prospective study of children hospitalized with severe LRTI in Cape Town, South Africa was conducted over a one-year period. Nasopharyngeal and induced sputum samples from child and nasopharyngeal sample from caregiver were tested for Bordetella pertussis using PCR (IS481+/hIS1001). History and clinical details were documented. RESULTS: 460 children with a median age of 8 (IQR 4-18) months were enrolled. B. pertussis infection was confirmed in 32 (7.0%). The adjusted risk of confirmed pertussis was significantly increased if infants were younger than two months [aRR 2.37 (95% CI 1.03-5.42]), HIV exposed but uninfected (aRR 3.53 [95% CI 1.04-12.01]) or HIV infected (aRR 4.35 [95% CI 1.24-15.29]). Mild (aRR 2.27 [95% CI 1.01-5.09]) or moderate (aRR 2.70 [95% CI 1.13-6.45]) under-nutrition in the children were also associated with higher risk. The highest adjusted risk occurred in children whose caregivers had B. pertussis detected from nasopharyngeal swabs (aRR 13.82 [95% CI 7.76-24.62]). Completion of the primary vaccine schedule (three or more doses) was protective (aRR 0.28 [95% CI 0.10-0.75]). CONCLUSIONS: HIV exposure or infection, undernutrition as well as detection of maternal nasal B. pertussis were associated with increased risk of pertussis in African children, especially in young infants. Completed primary vaccination was protective. There is an urgent need to improve primary pertussis vaccine coverage in low and middle-income countries. Pertussis vaccination of pregnant women, especially those with HIV infection should be prioritized.


Subject(s)
Bordetella pertussis/physiology , Child, Hospitalized , Whooping Cough/epidemiology , Adult , Caregivers , Child , Female , Humans , Infant , Male , Risk Factors , South Africa/epidemiology , Treatment Outcome
14.
PLoS One ; 15(4): e0231887, 2020.
Article in English | MEDLINE | ID: mdl-32320455

ABSTRACT

INTRODUCTION: Nasopharyngeal (NP) colonization with antimicrobial-resistant bacteria is a global public health concern. Antimicrobial-resistance (AMR) genes carried by the resident NP microbiota may serve as a reservoir for transfer of resistance elements to opportunistic pathogens. Little is known about the NP antibiotic resistome. This study longitudinally investigated the composition of the NP antibiotic resistome in Streptococcus-enriched samples in a South African birth cohort. METHODS: As a proof of concept study, 196 longitudinal NP samples were retrieved from a subset of 23 infants enrolled as part of broader birth cohort study. These were selected on the basis of changes in serotype and antibiogram over time. NP samples underwent short-term enrichment for streptococci prior to total nucleic acid extraction and whole metagenome shotgun sequencing (WMGS). Reads were assembled and aligned to pneumococcal reference genomes for the extraction of streptococcal and non-streptococcal bacterial reads. Contigs were aligned to the Antibiotic Resistance Gene-ANNOTation database of acquired AMR genes. RESULTS: AMR genes were detected in 64% (125/196) of the samples. A total of 329 AMR genes were detected, including 36 non-redundant genes, ranging from 1 to 14 genes per sample. The predominant AMR genes detected encoded resistance mechanisms to beta-lactam (52%, 172/329), macrolide-lincosamide-streptogramin (17%, 56/329), and tetracycline antibiotics (12%, 38/329). MsrD, ermB, and mefA genes were only detected from streptococcal reads. The predominant genes detected from non- streptococcal reads included blaOXA-60, blaOXA-22, and blaBRO-1. Different patterns of carriage of AMR genes were observed, with only one infant having a stable carriage of mefA, msrD and tetM over a long period. CONCLUSION: This study demonstrates that WMGS can provide a broad snapshot of the NP resistome and has the potential to provide a comprehensive assessment of resistance elements present in this niche.


Subject(s)
Metagenomics , Nasopharynx/microbiology , Sequence Analysis, DNA , Anti-Bacterial Agents/pharmacology , Cohort Studies , Female , Humans , Infant , Longitudinal Studies , Male , Nasopharynx/drug effects , South Africa , Streptococcus/drug effects , Streptococcus/genetics , Streptococcus/physiology
15.
Clin Infect Dis ; 70(6): 1147-1152, 2020 03 03.
Article in English | MEDLINE | ID: mdl-31286137

ABSTRACT

BACKGROUND: There are limited data on the etiology of respiratory infections in human immunodeficiency virus (HIV)-infected patients in resource-limited settings. METHODS: We performed quantitative multiplex real-time polymerase chain reaction (PCR) for Pneumocystis jirovecii and common bacterial and viral respiratory pathogens on sputum samples (spontaneous or induced) from a prospective cohort study of HIV-infected inpatients with World Health Organization danger signs and cough. Mycobacterial culture was done on 2 sputum samples, blood cultures, and relevant extrapulmonary samples. RESULTS: We enrolled 284 participants from 2 secondary-level hospitals in Cape Town, South Africa: median CD4 count was 97 cells/µL, 64% were women, and 38% were on antiretroviral therapy. One hundred forty-eight had culture-positive tuberculosis, 100 had community-acquired pneumonia (CAP), 26 had P. jirovecii pneumonia (PJP), and 64 had other diagnoses. Probable bacterial infection (>105 copies/mL) was detected in 133 participants; the prevalence was highest in those with CAP (52%). Haemophilus influenzae and Streptococcus pneumoniae were the commonest bacterial pathogens detected; atypical bacteria were uncommon. Viruses were detected in 203 participants; the prevalence was highest in those with PJP (85%). Human metapneumovirus was the commonest virus detected. Multiple coinfections were commonly detected. CONCLUSIONS: Sputum multiplex PCR could become a useful diagnostic tool for bacterial respiratory infections in HIV-infected inpatients, but its value is limited as quantitative cutoffs have only been established for a few bacterial pathogens and validation has not been done in this patient population. We found a high prevalence of respiratory viruses, but it is unclear whether these viruses were causing infection as there are no accepted quantitative PCR cutoffs for diagnosing respiratory viral infections.


Subject(s)
Community-Acquired Infections , HIV Infections , Pneumonia, Bacterial , Respiratory Tract Infections , Female , HIV , HIV Infections/complications , Humans , Inpatients , Male , Multiplex Polymerase Chain Reaction , Prospective Studies , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , South Africa/epidemiology , Sputum
16.
Clin Infect Dis ; 69(Suppl 2): S156-S163, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31505635

ABSTRACT

BACKGROUND: Bacterial meningitis is a major cause of mortality among children under 5 years of age. Senegal is part of World Health Organization-coordinated sentinel site surveillance for pediatric bacterial meningitis surveillance. We conducted this analysis to describe the epidemiology and etiology of bacterial meningitis among children less than 5 years in Senegal from 2010 and to 2016. METHODS: Children who met the inclusion criteria for suspected meningitis at the Centre Hospitalier National d'Enfants Albert Royer, Senegal, from 2010 to 2016 were included. Cerebrospinal fluid specimens were collected from suspected cases examined by routine bacteriology and molecular assays. Serotyping, antimicrobial susceptibility testing, and whole-genome sequencing were performed. RESULTS: A total of 1013 children were admitted with suspected meningitis during the surveillance period. Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus accounted for 66% (76/115), 25% (29/115), and 9% (10/115) of all confirmed cases, respectively. Most of the suspected cases (63%; 639/1013) and laboratory-confirmed (57%; 66/115) cases occurred during the first year of life. Pneumococcal meningitis case fatality rate was 6-fold higher than that of meningococcal meningitis (28% vs 5%). The predominant pneumococcal lineage causing meningitis was sequence type 618 (n = 7), commonly found among serotype 1 isolates. An ST 2174 lineage that included serotypes 19A and 23F was resistant to trimethoprim-sulfamethoxazole. CONCLUSIONS: There has been a decline in pneumococcal meningitis post-pneumococcal conjugate vaccine introduction in Senegal. However, disease caused by pathogens covered by vaccines in widespread use still persists. There is need for continued effective monitoring of vaccine-preventable meningitis.


Subject(s)
Meningitis, Bacterial/epidemiology , Pneumococcal Vaccines/administration & dosage , Sentinel Surveillance , Child, Preschool , Female , Haemophilus influenzae/classification , Humans , Infant , Infant, Newborn , Male , Meningitis, Bacterial/cerebrospinal fluid , Meningitis, Bacterial/mortality , Neisseria meningitidis/classification , Senegal/epidemiology , Serotyping , Streptococcus pneumoniae/classification , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Vaccines, Conjugate/administration & dosage , Whole Genome Sequencing
17.
Front Microbiol ; 10: 610, 2019.
Article in English | MEDLINE | ID: mdl-30972052

ABSTRACT

Introduction: Nasopharyngeal (NP) colonization by Streptococcus pneumoniae (pneumococcus) precedes the development of respiratory tract infection. Colonization by antimicrobial-resistant pneumococci, especially in infants, is a major public health concern. We longitudinally investigated antimicrobial-resistance amongst pneumococci colonizing the nasopharynx of South African infants immunized with the 13-valent pneumococcal conjugate vaccine (PCV13). Methods: NP swabs were collected every second week from birth through the first year of life from 137 infants. Pneumococci were identified and serotyped using conventional microbiological techniques, and their antibiotic susceptibility profiles determined by disk diffusion and E-test. Results: All infants were immunized with 3 doses of PCV13. 1520 pneumococci (760 non-repeat) isolates were recovered from 137 infants; including non-typeable (n = 99), PCV13 (n = 133) and non-PCV13 serotypes (n = 528). The prevalence of penicillin, erythromycin, and cotrimoxazole non-susceptibility was 19% (95% CI 17-22%) (3% fully resistant), 18% (95% CI 15-21%) (14% fully resistant), and 45% (95% CI 42-49%) (36% fully resistant), respectively. The predominant penicillin-non-susceptible serotypes included 19A, 19F, 15B/15C, 15A, and 21, while susceptible serotypes included 23A, 34, and 17A. Multidrug-resistance (MDR) was observed in 9% (95% CI 7-11%) of the isolates. PCV13 serotypes were more likely to be non-susceptible, compared to non-PCV13 serotypes, to penicillin (26% vs. 16%, p = 0.007), erythromycin (23% vs. 15%, p = 0.027) and cotrimoxazole (62% vs. 41%, p < 0.001). Non-susceptibility to penicillin, erythromycin, and cotrimoxazole remained relatively constant through the first year of life (X 2 test for trend: p = 0.184, p = 0.171, and p = 0.572, respectively). Overall, penicillin or erythromycin-non-susceptible pneumococci were carried for a shorter duration than susceptible pneumococci [penicillin (mean days, 18 vs. 21, p = 0.013) and erythromycin (mean days, 18 vs. 21, p = 0.035)]. Within individual infants carrying the same serotype longitudinally, changes in antibiotic susceptibility were observed over time in 45% (61/137) of infants and these changes were predominantly for penicillin (76%, 79/104). Conclusion: Prevalence of NP carriage with antibiotic-non-susceptible pneumococci was relatively constant throughout the first year of life. PCV13 serotypes were more commonly non-susceptible to penicillin, erythromycin, and cotrimoxazole. Penicillin or erythromycin-non-susceptible pneumococci were carried for a shorter duration than penicillin or erythromycin-susceptible pneumococci.

18.
Front Genet ; 10: 198, 2019.
Article in English | MEDLINE | ID: mdl-30930937

ABSTRACT

Background: Staphylococcus aureus colonization is a risk factor for invasive disease. Few studies have used strain genotype data to study S. aureus acquisition and carriage patterns. We investigated S. aureus nasopharyngeal carriage in infants in an intensively sampled South African birth cohort. Methods: Nasopharyngeal swabs were collected at birth and fortnightly from 137 infants through their first year of life. S. aureus was characterized by spa-typing. The incidence of S. aureus acquisition, and median carriage duration for each genotype was determined. S. aureus carriage patterns were defined by combining the carrier index (proportion of samples testing positive for S. aureus) with genotype diversity measures. Persistent or prolonged carriage were defined by a carrier index ≥0.8 or ≥0.5, respectively. Risk factors for time to acquisition of S. aureus were determined. Results: Eighty eight percent (121/137) of infants acquired S. aureus at least once. The incidence of acquisition at the species and genotype level was 1.83 and 2.8 episodes per child-year, respectively. No children had persistent carriage (defined as carrier index of >0.8). At the species level 6% had prolonged carriage, while only 2% had prolonged carriage with the same genotype. Carrier index correlated with the absolute number of spa-CCs carried by each infant (r = 0.5; 95% CI 0.35-0.62). Time to first acquisition of S. aureus was shorter in children from households with ≥5 individuals (HR 1.06, 95% CI 1.07-1.43), with S. aureus carrier mothers (HR; 1.5, 95% CI 1.2-2.47), or with a positive tuberculin skin test during the first year of life (HR; 1.81, 95% CI 0.97-3.3). Conclusion: Using measures of genotype diversity, we showed that S. aureus NP carriage is highly dynamic in infants. Prolonged carriage with a single strain occurred rarely; persistent carriage was not observed. A correlation was observed between carrier index and genotype diversity.

19.
ERJ Open Res ; 5(1)2019 Feb.
Article in English | MEDLINE | ID: mdl-30740462

ABSTRACT

Indoor air pollution (IAP) or environmental tobacco smoke (ETS) exposure may influence nasopharyngeal carriage of bacterial species and development of lower respiratory tract infection (LRTI). The aim of this study was to longitudinally investigate the impact of antenatal or postnatal IAP/ETS exposure on nasopharyngeal bacteria in mothers and infants. A South African cohort study followed mother-infant pairs from birth through the first year. Nasopharyngeal swabs were taken at birth, 6 and 12 months for bacterial culture. Multivariable and multivariate Poisson regression investigated associations between nasopharyngeal bacterial species and IAP/ETS. IAP exposures (particulate matter, carbon monoxide, nitrogen dioxide, volatile organic compounds) were measured at home visits. ETS exposure was measured through maternal and infant urine cotinine. Infants received the 13-valent pneumococcal and Haemophilus influenzae B conjugate vaccines. There were 881 maternal and 2605 infant nasopharyngeal swabs. Antenatal ETS exposure was associated with Streptococcus pneumoniae carriage in mothers (adjusted risk ratio (aRR) 1.73 (95% CI 1.03-2.92)) while postnatal ETS exposure was associated with carriage in infants (aRR 1.14 (95% CI 1.00-1.30)) Postnatal particulate matter exposure was associated with the nasopharyngeal carriage of H. influenzae (aRR 1.68 (95% CI 1.10- 2.57)) or Moraxella catarrhalis (aRR 1.42 (95% CI 1.03-1.97)) in infants. Early-life environmental exposures are associated with an increased prevalence of specific nasopharyngeal bacteria during infancy, which may predispose to LRTI.

20.
South Afr J HIV Med ; 19(1): 851, 2018.
Article in English | MEDLINE | ID: mdl-30167340

ABSTRACT

BACKGROUND: The World Health Organization (WHO) algorithm for the diagnosis of tuberculosis in seriously ill HIV-infected patients recommends that treatment for Pneumocystis jirovecii pneumonia (PJP) should be considered without giving clear guidance on selecting patients for empiric PJP therapy. PJP is a common cause of hospitalisation in HIV-infected patients in resource-poor settings where diagnostic facilities are limited. METHODS: We developed clinical prediction rules for PJP in a prospective cohort of HIV-infected inpatients with WHO danger signs and cough of any duration. The reference standard for PJP was > 1000 copies/mL of P. jirovecii DNA on real-time sputum polymerase chain reaction (PCR). Four potentially predictive variables were selected for regression models: dyspnoea, chest X-ray, haemoglobin and oxygen saturation. Respiratory rate was explored as a replacement for oxygen saturation as pulse oximetry is not always available in resource-poor settings. RESULTS: We enrolled 500 participants. After imputation for missing values, there were 56 PJP outcome events. Dyspnoea was not independently associated with PJP. Oxygen saturation and respiratory rate were inversely correlated. Two clinical prediction rules were developed: chest X-ray possible/likely PJP, haemoglobin ≥ 9 g/dL and either oxygen saturation < 94% or respiratory rate. The area under the receiver operating characteristic curve of the clinical prediction rule models was 0.761 (95% CI 0.683-0.840) for the respiratory rate model and 0.797 (95% CI 0.725-0.868) for the oxygen saturation model. Both models had zero probability for PJP for scores of zero, and positive likelihood ratios exceeded 10 for high scores. CONCLUSION: We developed simple clinical prediction rules for PJP, which, if externally validated, could assist decision-making in the WHO seriously ill algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...