Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Food Chem ; 402: 134267, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36122475

ABSTRACT

Characterising pesticide residues from a qualitative and quantitative point of view is key to both risk assessment in the framework of pesticide approval and risk management. In the European Union (EU), these concerns are addressed during the evaluation of active substances at the European level prior to marketing authorisation. In the framework of this review, we will focus on one specific item of the residue section, namely the effect of process (industrial or domestic transformation of the raw commodities) on the nature of the residue in food. A limited number of hydrolysis conditions defined by three parameters (temperature, pH and time) are set to be "representative of the most widely used industrial and domestic food processing technologies". These hydrolysis conditions, however, do not cover processes at temperatures higher than 120 °C, such as cooking with a conventional oven or in a pan, frying or using a microwave oven.


Subject(s)
Pesticide Residues , Pesticides , Pesticide Residues/analysis , Cooking , Food Contamination/analysis , Food Handling
2.
PLoS One ; 16(2): e0246885, 2021.
Article in English | MEDLINE | ID: mdl-33607651

ABSTRACT

Bacillus thuringiensis (Bt) belongs to the Bacillus cereus (Bc) group, well known as an etiological agent of foodborne outbreaks (FBOs). Bt distinguishes itself from other Bc by its ability to synthesize insecticidal crystals. However, the search for these crystals is not routinely performed in food safety or clinical investigation, and the actual involvement of Bt in the occurrence of FBOs is not known. In the present study, we reveal that Bt was detected in the context of 49 FBOs declared in France between 2007 and 2017. In 19 of these FBOs, Bt was the only microorganism detected, making it the most likely causal agent. Searching for its putative origin of contamination, we noticed that more than 50% of Bt isolates were collected from dishes containing raw vegetables, in particular tomatoes (48%). Moreover, the genomic characterization of isolates showed that most FBO-associated Bt isolates exhibited a quantified genomic proximity to Bt strains, used as biopesticides, especially those from subspecies aizawai and kurstaki. Taken together, these results strengthen the hypothesis of an agricultural origin for the Bt contamination and call for further investigations on Bt pesticides.


Subject(s)
Bacillus thuringiensis/genetics , Food Microbiology , Genomics , Genotype , Phenotype , France , Genome, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...