Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Microb Pathog ; 188: 106561, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307371

ABSTRACT

The emergence of the coronavirus pandemic facilitated the acquisition of mutations in the SARS-CoV-2 genome, resulting in the appearance of new variants over the past three years. We previously identified several taxa associated with the clinical outcome of COVID-19 disease in a retrospective study involving 120 patients (infected patients and negative subjects). However, little is known about whether the different variants could influence variations in the composition of the nasopharyngeal microbiota. In this study, we used multiplex pathogen-specific PCR to analyse the presence of nasopharyngeal bacterial pathogens from 400 SARS-CoV-2 positive patients (equally distributed in the four SARS-CoV-2 variants studied: B.1.1.7 (Alpha), B.1 0.617.2 (Delta), B.1.160 (Marseille-4), and B.1.1.529 (omicron)). We then compared them to 400 patients who tested negative for all respiratory viruses tested in this study, including SARS-CoV-2. We first observed an enrichment of Staphylococcus aureus (P ≤ .05) and Corynebacterium propinquum (P ≤ .05) in COVID-19-positive patients, regardless of the variant, compared to negative subjects. We specifically highlighted a significantly higher frequency of S. aureus (P ≤ .0001), C. propinquum (P ≤ .0001), and Klebsiella pneumoniae (P ≤ .0001), in patients infected with the omicron variant, whereas that of Haemophilus influenzae was higher in patients infected with Marseille-4 (P ≤ .001) and Alpha (P ≤ .01) variants. Our results suggest that the nasopharyngeal bacterial pathogens have their own specificity according to the SARS-CoV-2 variant and independently of the season. Additional studies are needed to determine the role of these pathogens in the evolution of the clinical outcome of patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Retrospective Studies , Staphylococcus aureus
3.
Am J Trop Med Hyg ; 110(2): 391-398, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38109763

ABSTRACT

Respiratory infections, mainly due to viruses, are among the leading causes of worldwide morbidity and mortality. We investigated the prevalence of viruses and bacteria in a cross-sectional survey conducted in Dielmo, a village in rural Senegal with a population of 481 inhabitants. Nasopharyngeal sampling was performed in 50 symptomatic subjects and 101 asymptomatic subjects. Symptomatic subjects were defined as individuals presenting with clinical signs of respiratory infection, whereas asymptomatic subjects were recruited in the same households. The identification of pathogens was performed by polymerase chain reaction for 18 respiratory viruses and eight respiratory bacteria. The prevalence results for respiratory viruses detected in each study group demonstrated that 83.6% of symptomatic samples were positive for at least one respiratory virus, and 21.8% were detected in asymptomatic samples. Influenza A (P = 0.0001), metapneumovirus (P = 0.04), and enterovirus (P = 0.001) were significantly more prevalent in symptomatic patients. Overall, 82.0% of symptomatic subjects and 26.9% of asymptomatic subjects were positive for at least one respiratory bacterium. The most frequent pathogenic bacteria detected were Moraxella catarrhalis (56%) and Streptococcus pneumoniae (48.0%) among symptomatic individuals, whereas in asymptomatic subjects Corynebacterium propinquum was more prevalent (18%). A principal component analysis showed that parainfluenzas 2 and 4 were associated with asymptomatic subjects, whereas influenza A was associated with the presence of symptoms. Considering these results, a large epidemiological surveillance of the circulation of these respiratory pathogens in the general population should be conducted to provide a better understanding of their carriage and to potentially prevent epidemics.


Subject(s)
Influenza, Human , Microbiota , Respiratory Tract Infections , Viruses , Humans , Infant , Influenza, Human/epidemiology , Cross-Sectional Studies , Viruses/genetics , Nasopharynx , Bacteria/genetics
4.
Microb Pathog ; 185: 106399, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37884212

ABSTRACT

The cause of death of Saint-Louis is not known, but recent findings indicated that he presented scurvy and inflammatory jaw disease, which has been associated with infection by oral commensals. Here, we have the exceptional opportunity to analyze the relics of the viscera of King Saint-Louis. A 4.3 g sample from the viscera relics of King Saint-Louis conserved in Versailles' cathedral was subjected to radiocarbon dating, electronic and optic microscopy, and elementary, palynological, molecular, proteomics and microbiological analyses including specific PCR and v3v4 16 S rRNA gene amplification prior to large-scale sequencing using an Illumina MiSeq instrument. The measured radiocarbon age was Cal 1290 CE-1400, which was compatible with that of the viscera of St Louis viscera, considering the addition of lime, incense and vegetables within the human organs. Elemental and palynological analyses confirmed a medieval embalming process. Proteomics analysis identified mainly human muscle and blood proteins. Specific PCR for plague, amoebiasis, shigellosis and typhoid fever was negative. C. sputigena was identified as the main pathogenic species representing 10.8 % of all microbial sequences. In contrast, C. sputigena was found in only 0.001 % of samples sequenced in our center, and the 23 positive human samples showed a dramatically lower abundance (0.02-2.6 %). In the literature, human infections with C. sputigena included odontitis, dental abscess, sinusitis, thoracic infections and bacteremia, particularly in immunocompromised patients with oral and dental diseases consistent with recent analysis of King Saint-Louis' jaw. C. sputigena, a commensal of the mouth that is potentially pathogenic and responsible for fatal bacteremia, may have been the cause of the king's death.


Subject(s)
Bacteremia , Scurvy , Male , Humans , Cause of Death , Bacteremia/microbiology , France
5.
Int J Microbiol ; 2023: 3802590, 2023.
Article in English | MEDLINE | ID: mdl-37559874

ABSTRACT

Blood is a precious biological liquid that is normally sterile. Therefore, bacteria in the bloodstream are shown a priori anomaly. A blood culture is systematically performed to diagnose the cause of the bacteremia. Indeed, a patient received in our service had a thalassemia major and underwent a genoidentical transplant. Then, a blood test was performed to diagnose a four-day fever. In this context, we have isolated strain Marseille-Q2617 from the blood sample. It revealed a new bacterial strain that belongs to the genus Streptococcus. It is a Gram-positive coccus, nonmotile, and nonspore forming. The major fatty acid found is hexadecanoic acid, with 49.5%. A taxonomic method was used to characterize the strain by studying their phenotypic, phylogenetic, and genomic characteristics. In addition, sequence analysis of the 16S rRNA gene shows that the strain Marseille-Q2617 has 99.94% sequence similarity to Streptococcus mitis. Average nucleotide identity (ANI) analysis for strain Marseille-Q2617T showed the highest similarity of 92.9% with S. mitis. The DNA-DNA hybridization value obtained (50.2%) between strain Marseille-Q2607 and S. mitis, its closest related species, was below the recommended threshold (<70%). Strain Marseille-Q2617T has a genome size of 2.02 Mbp with 40.5 mol% of G + C content. Based on these results, we propose a new species of the genus Streptococcus, for which the name Streptococcus thalassemiae sp. nov., Marseille-Q2617T (=CSUR Q2617 = CECT 30109) was proposed.

6.
Oncoimmunology ; 12(1): 2237354, 2023.
Article in English | MEDLINE | ID: mdl-37492227

ABSTRACT

Formyl peptide receptor-1 (FPR1) is a pattern recognition receptor that is mostly expressed by myeloid cells. In patients with colorectal cancer (CRC), a loss-of-function polymorphism (rs867228) in the gene coding for FPR1 has been associated with reduced responses to chemotherapy or chemoradiotherapy. Moreover, rs867228 is associated with accelerated esophageal and colorectal carcinogenesis. Here, we show that dendritic cells from Fpr1-/- mice exhibit reduced migration in response to chemotherapy-treated CRC cells. Moreover, Fpr1-/- mice are particularly susceptible to chronic ulcerative colitis and colorectal oncogenesis induced by the mutagen azoxymethane followed by oral dextran sodium sulfate, a detergent that induces colitis. These experiments were performed after initial co-housing of Fpr1-/- mice and wild-type controls, precluding major Fpr1-driven differences in the microbiota. Pharmacological inhibition of Fpr1 by cyclosporin H also tended to increase intestinal oncogenesis in mice bearing the ApcMin mutation, and this effect was reversed by the anti-inflammatory drug sulindac. We conclude that defective FPR1 signaling favors intestinal tumorigenesis through the modulation of the innate inflammatory/immune response.


Subject(s)
Colitis , Colorectal Neoplasms , Animals , Mice , Carcinogenesis/genetics , Colitis/chemically induced , Colitis/genetics , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/genetics , Receptors, Formyl Peptide/genetics , Signal Transduction
7.
Microsc Res Tech ; 86(10): 1249-1257, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36773029

ABSTRACT

Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) are powerful tools to study the ultrastructure of numerous specimens and to determine their elemental composition, respectively. However, results have not yet been reported on their application to urine samples in routine clinical laboratory practice. Herein we investigate urine sediment by using SEM and EDX to detect and identify different urine components. A total of 206 urine samples from patients with and without urinary tract infections were analyzed using SEM and EDX. Microorganisms, crystals, epithelial cells, leukocytes, and erythrocytes were targeted in urine sediment samples. The identification of urine components was based on their morphology, size, contrast, and elemental composition. SEM-analysis allowed us to identify and classify microorganisms in urine sediments into the categories of gram-negative bacilli, cluster cocci, chain cocci, gram-negative bacilli, gram-positive bacilli, and yeasts. In addition, various types of epithelial cells such as renal, transitional, and squamous epithelial cells were found. Furthermore, leukocytes and erythrocytes were well identified, with the detection of various morphological forms of erythrocytes, such as dysmorphic and isomorphic erythrocytes. Using SEM-EDX analysis, calcium oxalate was the most frequently-identified crystal (92.0%), with prominent peaks of C, O, and Ca elements, followed by struvite (6%), with peaks of Mg, P, O, and N. These preliminary data suggest that the two complementary SEM-EDX analyses can be used to detect and identify microorganisms and crystals in urine samples. Further studies are still needed to apply SEM-EDX to urine sediment analysis. SEM-EDX analyses provided comparative results with the routine results, with accurate identification, high resolution and deep focus compared to the routine urinalysis SEM-analysis allowed us to identify and classify microorganisms in urine sediments into the categories of gram-negative bacilli, cluster cocci, chain cocci, gram-negative bacilli, gram-positive bacilli and yeasts. SEM-EDX analysis enabled the accurate identification of crystals based on both morphology and elemental composition.


Subject(s)
Calcium Oxalate , Erythrocytes , Humans , Microscopy, Electron, Scanning , X-Rays , Struvite , Calcium Oxalate/analysis , Erythrocytes/chemistry
8.
Epidemiol Infect ; 150: e195, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36345840

ABSTRACT

Episodes of bacterial superinfections have been well identified for several respiratory viruses, notably influenza. In this retrospective study, we compared the frequency of superinfections in COVID-19 patients to those found in influenza-positive patients, and to controls without viral infection. We included 42 468 patients who had been diagnosed with COVID-19 and 266 261 subjects who had tested COVID-19 negative between 26 February 2020 and 1 May 2021. In addition, 4059 patients were included who had tested positive for the influenza virus between 1 January 2017 and 31 December 2019. Bacterial infections in COVID-19 patients were more frequently healthcare-associated, and acquired in ICUs, were associated with longer ICU stays, and occurred in older and male patients when compared to controls and to influenza patients (P < 0.0001 for all). The most common pathogens proved to be less frequent in COVID-19 patients, including fewer cases of bacteraemia involving E. coli (P < 0.0001) and Klebsiella pneumoniae (P = 0.027) when compared to controls. In respiratory specimens Haemophilus influenzae (P < 0.0001) was more frequent in controls, while Streptococcus pneumoniae (P < 0.0001) was more frequent in influenza patients. Likewise, species associated with nosocomial transmission, such as Pseudomonas aeruginosa and Staphylococcus epidermidis, were more frequent among COVID-19 patients. Finally, we observed a high frequency of Enterococcus faecalis bacteraemia among COVID-19 patients, which were mainly ICU-acquired and associated with a longer timescale to acquisition.


Subject(s)
Bacteremia , Bacterial Infections , COVID-19 , Influenza, Human , Superinfection , Humans , Male , Aged , COVID-19/epidemiology , Retrospective Studies , Escherichia coli , Bacterial Infections/epidemiology , Hospitals , Bacteremia/epidemiology
9.
FEMS Microbiol Lett ; 369(1)2022 09 20.
Article in English | MEDLINE | ID: mdl-36029281

ABSTRACT

Strain Marseille-P4119T was isolated from a faecal sample of a healthy 32-year-old faecal transplant donor. The bacterium was anaerobic, Gram-negative, rod-shaped, non-motile, and did not produce spores. We studied its phenotypic characteristics and sequenced its whole genome. The major fatty acids were C15:0anteiso and C15:0iso. The final genome assembly was 3912650 bp long with a 44.4 mol% G + C content, 3094 protein-coding genes and 74 RNA genes. Strain Marseille-P4119T exhibited a 97.10% 16S rRNA sequence identity and a 29.0% dDDH with Prevotella stercorea CB35T, OrthoANI values ranged from 68.5% with Prevotella enoeca to 77.4% with Prevotella stercorea, the phylogenetically closest bacterial species with standing in nomenclature. Based on the phylogenetic, phenotypic and genomic analyses, we propose the creation of the novel species Prevotella merdae sp. nov. The type strain is Marseille-P4119T ( = CSUR P4119T = CECT 9566T).


Subject(s)
Fatty Acids , Prevotella , Adult , Bacterial Typing Techniques , DNA, Bacterial/genetics , Feces/microbiology , Humans , Phylogeny , Prevotella/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
10.
Curr Microbiol ; 79(9): 263, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35857140

ABSTRACT

Strain Marseille-P8396T is a new species isolated from a patient with recurrent Clostridioides difficile infection. Its optimal growth condition was observed at pH of 7.5, at a temperature of 37 °C after 72 h of incubation on Columbia agar (BioMérieux, France) with 5% sheep blood, under an anaerobic atmosphere. Strain Marseille-P8396T cells are Gram-positive rods, nonspore-forming, and nonmotile. 9-Octadecenoic acid (41.9%), hexadecanoic acid (22.5%), and 11-Octadecenoic acid (11.0%) represent the major fatty acid of strain Marseille-P8396T. The optimal growth condition of strain Marseille-P8396T was observed at 37 °C after 72 h of incubation under an anaerobic atmosphere, pH ranging from 6.5 to 8.5, and salinity of 0.5 to 7.5%. Its genome (Genbank Accession Number NZ_CABDUX000000000) size was 3.86 Mb with 59.4 mol% of G+C content, and 3,124 protein-coding genes. The 16S rRNA gene sequence (Genbank accession number NR_148574.1) of strain Marseille-P8396T shared a similarity of 98.71% with Raoultibacter timonensis strain Marseille-P3277T (Genbank accession number NR_148574.1), currently the most closely related species. However, the OrthoANI and digital DNA-DNA hybridization values with Raoultibacter timonensis strain Marseille-P3277T (Genbank accession number OEPT01000000) were 80.15% and 24.6 ± 4.8%, respectively. Taken together, these results clearly demonstrate that strain Marseille-P8396T represents a new species within the genus Raoultibacter described here as Raoultibacter phocaeensis sp. nov. (type strain: Marseille-P8396T=CSUR8396T=CECT 30202T).


Subject(s)
Clostridium Infections , Actinobacteria , Animals , Bacterial Typing Techniques , Clostridium Infections/diagnosis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sheep/genetics
11.
Front Microbiol ; 13: 871627, 2022.
Article in English | MEDLINE | ID: mdl-35655997

ABSTRACT

While populations at risk for severe SARS-CoV-2 infections have been clearly identified, susceptibility to the infection and its clinical course remain unpredictable. As the nasopharyngeal microbiota may promote the acquisition of several respiratory infections and have an impact on the evolution of their outcome, we studied the nasopharyngeal microbiota of COVID-19 patients in association with baseline disease-related clinical features compared to that of patients tested negative. We retrospectively analyzed 120 nasopharyngeal pseudonymized samples, obtained for diagnosis, divided into groups (infected patients with a favorable outcome, asymptomatic, and deceased patients) and patients tested negative for SARS-CoV-2, by using Illumina-16S ribosomal ribonucleic acid (rRNA) sequencing and specific polymerase chain reaction (PCR) targeting pathogens. We first found a depletion of anaerobes among COVID-19 patients, irrespective of the clinical presentation of the infection (p < 0.029). We detected 9 taxa discriminating patients tested positive for SARS-CoV-2 from those that were negative including Corynebacterium propinquum/pseudodiphtericum (p ≤ 0.05), Moraxella catarrhalis (p ≤ 0.05), Bacillus massiliamazoniensis (p ≤ 0.01), Anaerobacillus alkalidiazotrophicus (p ≤ 0.05), Staphylococcus capitis subsp. capitis (p ≤ 0.001), and Afipia birgiae (p ≤ 0.001) with 16S rRNA sequencing, and Streptococcus pneumoniae (p ≤ 0.01), Klebsiella pneumoniae (p ≤ 0.01), and Enterococcus faecalis (p ≤ 0.05) using real-time PCR. By designing a specific real-time PCR, we also demonstrated that C. propinquum is decreased in asymptomatic individuals compared to other SARS-CoV 2 positive patients. These findings indicate that the nasopharyngeal microbiota as in any respiratory infection plays a role in the clinical course of the disease. Further studies are needed to elucidate the potential role in the clinical course of the disease of M. catarrhalis, Corynebacterium accolens, and more specifically Corynebacterium propinquum/diphteriticum in order to include them as predictors of the severity of COVID-19.

12.
Eur J Clin Microbiol Infect Dis ; 41(6): 951-959, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35583717

ABSTRACT

Blood cultures detected as positive by the automated system but negative by microscopy and subculture are considered as "false-positives." Several causes have been identified, including hyperleukocytosis or the presence of fastidious bacteria, but as many cases remain unexplained we aimed to investigate the false positives occurring in our laboratory. We retrospectively collected data on blood cultures received over a period of 12 months to determine factors associated with the false-positive vials. We then prospectively validated our findings on the false-positive results occurring over a 3.5-month period. We finally applied scanning electron microscopy (SEM) on 63 false positives and molecular approaches on a subset of them. In the retrospective study, 154 (85%) of the 181 false-positive identified were positive following less than 4 h of incubation and were considered as "early false-positives." By performing ROC curves on these early false positives, we demonstrate that the absolute number of leukocytes is in fact the most discriminating factor of early false positivity (p < 0.001). This phenomenon can be the consequence of either a high blood culture volume (p < 0.001) or hyperleukocytosis (p < 0.001). In the prospective study, the use of a threshold of 219 million of leukocytes per vial enabled the identification of 97% of the early false positives. Finally, SEM and specific qPCR enabled three additional identifications while 16S rRNA/nanopore sequencing enabled the detection of Helicobacter cinaedi bacteremia and a polymicrobial infection. A high absolute number of leukocytes in blood cultures explains most false positives, thereby making it possible to target additional microbiological investigations.


Subject(s)
Bacteremia , Blood Culture , Bacteremia/microbiology , False Positive Reactions , Humans , Leukocytes , Prospective Studies , RNA, Ribosomal, 16S , Retrospective Studies
13.
FEMS Microbiol Lett ; 369(1)2022 05 23.
Article in English | MEDLINE | ID: mdl-35460225

ABSTRACT

Blood is precious tissue that is normally sterile. With the aim of diagnosing the cause of bacteremia, three bacterial strains were isolated from three different individuals. Strains Marseille-P7157T and Marseille-Q2854T are Gram-stain positive, non-spore-forming rod-shaped bacteria, while strain Marseille-P8049T is a Gram-stain negative, motile, non-spore-forming and rod-shaped bacterium. The major fatty acids found (>30%) were hexadecanoic acid for strain Marseille-P8049T and 12-methyl tetradecanoic acid for both strains Marseille-P7157T and Marseille-P2854T. The 16S rRNA gene sequence analysis shows that strains Marseille-P8049 and Marseille-Q2854T have sequence similarity of 96.8%, 99.04%, and 98.3% with Acinetobacter ursingii strain LUH3792 (NR_025392.1), Gulosibacter faecalis strain B187 (NR_041812.1), and Schaalia canis strain CCUG 41706 (NR_025366.1), respectively. In addition, strains Marseille-Q2854T, Marseille-P8049T and Marseille-P7157T shared with their closely related species cited above the following DDH values: 19.5%, 24.4%, and 20.2%, respectively. Based on these phenotypic and genomic findings, we consider that strains Marseille-P8049T (= CSUR P8049 = CECT 30350), Marseille-P2854T ( = CSUR Q2854 = CECT 30120) and Marseille-P7157T ( = CSUR P7157 = CECT 30048) are new bacterial species, for which the names Acinetobacter ihumii sp. nov., Microbacterium ihumii sp. nov., and Gulosibacter massiliensis sp. nov., are proposed.


Subject(s)
Acinetobacter , Actinomycetales , Acinetobacter/genetics , Actinomycetales/genetics , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids , Humans , Microbacterium , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
14.
Semin Cancer Biol ; 86(Pt 3): 875-884, 2022 11.
Article in English | MEDLINE | ID: mdl-34979272

ABSTRACT

The higher incidence of bladder cancer in men has long been attributed to environmental factors, including smoking. The fact that the sex ratio of bladder cancer remains consistently weighted toward men despite the remarkable increase in the prevalence of smoking among women suggests that other risk factors influence the incidence rates of bladder cancer. These factors may include the urinary microbiota. In this study, we provide a review of recent literature regarding the association between bladder cancer and changes in the urinary microbiota, with a focus on the potential role of uropathogens in the microbiota and sex in bladder cancer. Four databases were systematically searched up to 31 March 2021 to identify human case-controlled studies that evaluated the relationship between urinary microbiota and bladder cancer. We combined bacterial taxa that were significantly higher or lower in the bladder cancer group in each study in the urine (voided and catheterized) and tissue samples. Findings from sixteen eligible studies were analyzed. The total sample size of the included studies was 708 participants, including 449 (63.4 %) bladder cancer patients and 259 (36.6 %) participants in the control group. When considering only the taxa that have been reported in at least two different studies, we observed that with regards to neoplastic tissues, no increased taxa were reported, while Lactobacillus (2/5 of the studies on tissue samples) was increased in nonneoplastic-tissue compared to neoplastic-tissues at the genus level. In catheterized urine, Veillonella (2/3 of the studies on catheterized urine) was increased in bladder cancer patients compared to the control groups at the genus level. In voided urine, Acinetobacter, Actinomyces, Aeromonas, Anaerococcus, Pseudomonas, and Tepidomonas were increased in the bladder cancer patients, while Lactobacillus, Roseomonas, Veillonella were increased in the control groups. Regarding gender, the genus Actinotignum was increased in female participants while Streptococcus was increased in male participants at the genus level. Regarding potential uropathogens in the urinary microbiota, Escherichia-Shigella provided conflicting results, with both showing higher and lower levels in the bladder cancer groups. However, the family Enterobacteriaceae was lower in the bladder cancer groups than in the control groups. In conclusion, there is no consensus on what taxa of the urinary microbiota are associated with bladder cancer according to the sample type. Findings on the potential role of uropathogens in the urinary microbiota in bladder cancer remain inconsistent. Due to the limited number of studies, further studies on urinary microbiota and bladder cancer are needed to address this issue. Given that all publications concerning the urinary microbiota and bladder cancer have been performed using 16S rRNA gene sequencing, we propose that polyphasic approaches, including culture-dependent techniques, may allow for a more comprehensive investigation of the urinary microbiota associated with bladder cancer.


Subject(s)
Microbiota , Urinary Bladder Neoplasms , Humans , Female , Male , Urinary Bladder Neoplasms/etiology , Urinary Bladder Neoplasms/microbiology , RNA, Ribosomal, 16S/genetics , Urinary Bladder/microbiology , Microbiota/genetics , Bacteria/genetics
16.
Clin Gastroenterol Hepatol ; 20(4): 787-797.e2, 2022 04.
Article in English | MEDLINE | ID: mdl-33359726

ABSTRACT

BACKGROUND AND AIMS: Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), and human immunodeficiency virus (HIV) both impact innate and adaptive immunity in the intestinal mucosa. As it is a rare situation, the intersection between HIV and IBD remains unclear, especially the impact of HIV infection on the course of IBD, and the drug safety profile is unknown. METHODS: We conducted a multicenter retrospective cohort study between January 2019 and August 2020. All adult patients with IBD and concomitant HIV infection were included. Each IBD patient with HIV was matched to two HIV-uninfected IBD patients. RESULTS: Overall, 195 patients with IBD were included, including 65 HIV-infected patients and 130 without HIV infection. Of the 65 infected patients, 22 (33.8%) required immunosuppressants and 31 (47.7%) biologics. In the HIV-infected group, the need for immunosuppressants (p = 0.034 for CD and p = 0.012 for UC) and biologics (p = 0.004 for CD and p = 0.008 for UC) was significantly lower. The disease course, using a severity composite criterion, was not significantly different between the two groups for CD (hazard ration (HR) = 1.3 [0.7; 2.4], p = 0.45) and UC (HR, 1.1 [0.5; 2.7], p = 0.767). The overall drug safety profile was statistically similar between the two groups. CONCLUSION: Although HIV-infected patients receive less treatments, the course of their IBD did not differ than uninfected, suggesting that HIV infection might attenuate IBD. The drug safety profile is reassuring, allowing physician to treat these patients according to current recommendations.


Subject(s)
Colitis, Ulcerative , Crohn Disease , HIV Infections , Inflammatory Bowel Diseases , Adult , Colitis, Ulcerative/complications , Crohn Disease/complications , HIV Infections/complications , HIV Infections/drug therapy , Humans , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/drug therapy , Retrospective Studies
17.
Viruses ; 13(12)2021 12 16.
Article in English | MEDLINE | ID: mdl-34960797

ABSTRACT

BACKGROUND: We aimed to compare the clinical severity in patients who were coinfected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rhinovirus or monoinfected with a single one of these viruses. METHODS: The study period ranged from 1 March 2020 to 28 February 2021 (one year). SARS-CoV-2 and other respiratory viruses were identified by real-time reverse-transcription-PCR as part of the routine work at Marseille University hospitals. Bacterial and fungal infections were detected by standard methods. Clinical data were retrospectively collected from medical files. This study was approved by the ethical committee of our institute. RESULTS: A total of 6034/15,157 (40%) tested patients were positive for at least one respiratory virus. Ninety-three (4.3%) SARS-CoV-2-infected patients were coinfected with another respiratory virus, with rhinovirus being the most frequent (62/93, 67%). Patients coinfected with SARS-CoV-2 and rhinovirus were significantly more likely to report a cough than those with SARS-CoV-2 monoinfection (62% vs. 31%; p = 0.0008). In addition, they were also significantly more likely to report dyspnea than patients with rhinovirus monoinfection (45% vs. 36%; p = 0.02). They were also more likely to be transferred to an intensive care unit and to die than patients with rhinovirus monoinfection (16% vs. 5% and 7% vs. 2%, respectively) but these differences were not statistically significant. CONCLUSIONS: A close surveillance and investigation of the co-incidence and interactions of SARS-CoV-2 and other respiratory viruses is needed. The possible higher risk of increased clinical severity in SARS-CoV-2-positive patients coinfected with rhinovirus warrants further large scale studies.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Coinfection/virology , Picornaviridae Infections/epidemiology , Adolescent , Adult , Aged , COVID-19/diagnosis , Child , Coinfection/diagnosis , Female , Humans , Incidence , Male , Middle Aged , Picornaviridae Infections/diagnosis , Picornaviridae Infections/virology , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Retrospective Studies , Rhinovirus , SARS-CoV-2 , Severity of Illness Index , Young Adult
18.
Microbiol Resour Announc ; 10(41): e0059721, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34647805

ABSTRACT

We report here the complete genome sequences of three Bacillus cereus group strains isolated from blood cultures from premature and immunocompromised infants hospitalized in intensive care units in three French hospitals. These complete genome sequences were obtained from a combination of Illumina HiSeq X Ten short reads and Oxford Nanopore MinION long reads.

19.
Arch Microbiol ; 203(9): 5817-5823, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34420080

ABSTRACT

Thanks to its ability to isolate previously uncultured bacterial species, culturomics has dynamized the study of the human microbiota. A new bacterial species, Gemella massiliensis Marseille-P3249T, was isolated from a sputum sample of a healthy French man. Strain Marseille-P3249T is a facultative anaerobe, catalase-negative, Gram positive, coccus, and unable to sporulate. The major fatty acids were C16:0 (34%), C18:1n9 (28%), C18:0 (15%) and C18:2n6 (13%). Its 16S rRNA sequence exhibits a 98.3% sequence similarity with Gemella bergeri strain 617-93T, its phylogenetically closest species with standing in nomenclature. Its digital DNA-DNA hybridization (dDDH) and OrthoANI values with G. bergeri of only 59.7 ± 5.6% and 94.8%, respectively. These values are lower than the thresholds for species delineation (> 70% and > 95%, respectively). This strain grows optimally at 37 °C and its genome is 1.80 Mbp long with a 30.5 mol% G + C content. Based on these results, we propose the creation of the new species Gemella massilienis sp. nov., strain Marseille-P3249T (= CSUR P3249 = DSMZ 103940).


Subject(s)
Gemella , Phylogeny , Sputum/microbiology , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Gemella/classification , Gemella/isolation & purification , Humans , Male , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...