Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(17): 9180-9188, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38642066

ABSTRACT

Polyaniline (PAni)-based sensors are a promising solution for ammonia (NH3) detection at the ppb level. However, the nature of the NH3-PAni interaction and underlying drivers remain unclear. This paper proposes to characterize the interaction between doped PAni (dPAni) sensing material and NH3 by using a Knudsen cell. First, to characterize the dPAni interface, the probe-gas method, i.e., titration of surface sites with a gas of specific properties, is deployed. The dPAni interface is found to be homogeneous with more than 96% of surface sites of acid nature or with hydroxyl functional groups. This result highlights that basic gases such as amines might act as interfering gases for NH3 detection by polyaniline-based sensors. Second, the adsorption isotherms of NH3 and trimethylamine (TMA) on dPAni are reported at ambient temperature conditions, 293 K. The uptake of NH3 and TMA on dPAni follows a Langmuir-type behavior. This approach allows for the first time to quantify the uptake of NH3 and TMA on gas-sensor materials and determine typical Langmuir adsorption parameters, i.e., the partitioning coefficient, KLang, and the maximum surface coverage, Nmax. The corresponding values obtained for NH3 and TMA are Klang (NH3) = 19.7 × 10-15 cm3 molecules-1 Nmax (NH3) = 11.6 × 1014 molecules cm-2, KLang (TMA) = 7.0 × 10-15 cm3 molecules-1 Nmax (TMA) = 5.0 × 1014 molecules cm-2. KLang and Nmax values of NH3 are higher than those of TMA, suggesting that NH3 is more efficiently taken up than TMA on dPAni. The results of this work suggest that strong hydrogen bonding drives the performance of a polyaniline-based gas sensor for NH3 and amines. In conclusion, the Knudsen cell approach allows reconsidering the fundamentals of NH3 interactions with dPAni and provides new insights on drivers to enhance sensing properties.

2.
Sensors (Basel) ; 21(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34640849

ABSTRACT

Hybrid composites based on tin chloride and the conductive polymers, polyaniline (PAni) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), were integrated into high-performance hydrogen sulphide (H2S) gas sensors working at room temperature. The morphology and chemical properties were studied by scanning and transmission electron microscopy (SEM, TEM), energy dispersive spectroscopy (EDS) and Fourier-transform infrared (FTIR). The composites demonstrated a slightly porous nanostructure and strong interactions between the polymers and the metal salt, which slightly dopes PAni. The hybrid sensors exhibited a very low detection limit (<85 ppb), fast response, repeatability, reproducibility and stability over one month. Moreover, this work presents how calibration based on the derivative of the signal can give hybrid sensors the ability to quantify the concentration of targeted gas, even during continuous variation of the analyte concentration. Finally, the effect of interfering species, such as water and ammonia, is discussed.

3.
Sensors (Basel) ; 21(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383812

ABSTRACT

Polyaniline (PANI) is a conducting polymer, widely used in gas-sensing applications. Due to its classification as a semiconductor, PANI is also used to detect reducing ammonia gas (NH3), which is a well-known and studied topic. However, easier, cheaper and more straightforward procedures for sensor fabrication are still the subject of much research. In the presented work, we describe a novel, more controllable, synthesis approach to creating NH3 PANI-based receptor elements. The PANI was electrochemically deposited via cyclic voltammetry (CV) on screen-printed electrodes (SPEs). The morphology, composition and surface of the deposited PANI layer on the Au electrode were characterised with electron microscopy, Fourier-transform infrared spectroscopy and profilometry. Prior to the gas-chamber measurement, the SPE was suitably modified by Au sputtering the individual connections between the three-electrode system, thus showing a feasible way of converting a conventional three-electrode electrochemical SPE system into a two-electrode NH3-gas detecting system. The feasibility of the gas measurements' characterisation was improved using the gas analyser. The gas-sensing ability of the PANI-Au-SPE was studied in the range 32-1100 ppb of NH3, and the sensor performed well in terms of repeatability, reproducibility and sensitivity.

4.
J Phys Chem B ; 121(42): 9947-9956, 2017 10 26.
Article in English | MEDLINE | ID: mdl-28930452

ABSTRACT

Conducting polymers demonstrate an interesting ability to change their wettability at ultralow voltage (<1 V). While the conducting hydrogel poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) is increasingly used as an interface with biology partly thanks to its mechanical properties, little is known about the electrical control of its wettability. We rely on the captive bubble technique to study this hydrogel property under relevant conditions (fully immerged). We here report that the wettability variations of PEDOT:PSS are driven by an electrowetting phenomenon in contrast to other conducting polymers which are thought to undergo wettability changes due to oxido-reduction reactions. In addition, we propose a modified electrowetting model to describe the wettability variations of PEDOT:PSS in aqueous solution under ultralow voltage and we show how these variations can be tuned in different ranges of contact angles (above or under 90°) by coating the PEDOT:PSS surface.

5.
PLoS One ; 6(10): e25014, 2011.
Article in English | MEDLINE | ID: mdl-22043279

ABSTRACT

The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community.


Subject(s)
Drug Resistance, Fungal/genetics , Ecosystem , Plants, Genetically Modified/genetics , Plant Structures , Soil , Soil Microbiology , Soil Pollutants , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...