Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(33): 39186-39197, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37556356

ABSTRACT

Li1.5Al0.5Ge1.5(PO4)3 (LAGP) is a promising oxide solid electrolyte for all-solid-state batteries due to its excellent air stability, acceptable electrochemical stability window, and cost-effective precursor materials. However, further improvement in the ionic conductivity performance of oxide solid-state electrolytes is hindered by the presence of grain boundaries and their associated morphologies and composition. These key factors thus represent a major obstacle to the improved design of modern oxide based solid-state electrolytes. This study establishes a correlation between the influence of the grain boundary phases, their 3D morphology, and compositions formed under different sintering conditions on the overall LAGP ionic conductivity. Spark plasma sintering has been employed to sinter oxide solid electrolyte material at different temperatures with high compacity values, whereas a combined potentiostatic electrochemical impedance spectroscopy, 3D FIB-SEM tomography, XRD, and solid-state NMR/materials modeling approach provides an in-depth analysis of the influence of the morphology, structure, and composition of the grain boundary phases that impact the total ionic conductivity. This work establishes the first 3D FIB-SEM tomography analysis of the LAGP morphology and the secondary phases formed in the grain boundaries at the nanoscale level, whereas the associated 31P and 27Al MAS NMR study coupled with materials modeling reveals that the grain boundary material is composed of Li4P2O7 and disordered Li9Al3(P2O7)3(PO4)2 phases. Quantitative 31P MAS NMR measurements demonstrate that optimal ionic conductivity for the LAGP system is achieved for the 680 °C SPS preparation when the disordered Li9Al3(P2O7)3(PO4)2 phase dominates the grain boundary composition with reduced contributions from the highly ordered Li4P2O7 phases, whereas the 27Al MAS NMR data reveal that minimal structural change is experienced by each phase throughout this suite of sintering temperatures.

2.
ACS Nanosci Au ; 3(3): 230-240, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37360848

ABSTRACT

Organic-inorganic halide perovskites are interesting candidates for solar cell and optoelectronic applications owing to their advantageous properties such as a tunable band gap, low material cost, and high charge carrier mobilities. Despite making significant progress, concerns about material stability continue to impede the commercialization of perovskite-based technology. In this article, we investigate the impact of environmental parameters on the alteration of structural properties of MAPbI3 (CH3NH3PbI3) thin films using microscopy techniques. These characterizations are performed on MAPbI3 thin films exposed to air, nitrogen, and vacuum environments, the latter being possible by using dedicated air-free transfer setups, after their fabrication into a nitrogen-filled glovebox. We observed that even less than 3 min of air exposure increases the sensitivity to electron beam deterioration and modifies the structural transformation pathway as compared to MAPbI3 thin films which are not exposed to air. Similarly, the time evolution of the optical responses and the defect formation of both air-exposed and non-air-exposed MAPbI3 thin films are measured by time-resolved photoluminescence. The formation of defects in the air-exposed MAPbI3 thin films is first observed by optical techniques at longer timescales, while structural modifications are observed by transmission electron microscopy (TEM) measurements and supported by X-ray photoelectron spectroscopy (XPS) measurements. Based on the complementarity of TEM, XPS, and time-resolved optical measurements, we propose two different degradation mechanism pathways for air-exposed and non-air-exposed MAPbI3 thin films. We find that when exposed to air, the crystalline structure of MAPbI3 shows gradual evolution from its initial tetragonal MAPbI3 structure to PbI2 through three different stages. No significant structural changes over time from the initial structure are observed for the MAPbI3 thin films which are not exposed to air.

3.
ACS Appl Mater Interfaces ; 15(23): 28398-28409, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37249400

ABSTRACT

Development of nanoscale multicomponent solid inorganic materials is often hindered by slow solid diffusion kinetics and poor precursor mixing in conventional solid-state synthesis. These shortcomings can be alleviated by combining nanosized precursor mixtures and low temperature reaction, which could reduce crystal growth and accelerate the solid diffusion at the same time. However, high throughput production of nanoparticle mixtures with tunable composition via conventional synthesis is very challenging. In this work, we demonstrate that ∼10 nm homogeneous mixing of sub-10 nm nanoparticles can be achieved via spark nanomixing at room temperature and pressure. Kinetically driven Spark Plasma Discharge nanoparticle generation and ambient processing conditions limit particle coarsening and agglomeration, resulting in sub-10 nm primary particles of as-deposited films. The intimate mixing of these nanosized precursor particles enables intraparticle diffusion and formation of Cu/Ni nanoalloy during subsequent low temperature annealing at 100 °C. We also discovered that cross-particle diffusion is promoted during the low-temperature sulfurization of Cu/Ag which tends to phase-segregate, eventually leading to the growth of sulfide nanocrystals and improved homogeneity. High elemental homogeneity, small diffusion path lengths, and high diffusibility synergically contribute to faster diffusion kinetics of sub-10 nm nanoparticle mixtures. The combination of ∼10 nm homogeneous precursors via spark nanomixing, low-temperature annealing, and a wide range of potentially compatible materials makes our approach a good candidate as a general platform toward accelerated solid state synthesis of nanomaterials.

4.
Nat Commun ; 14(1): 104, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36609570

ABSTRACT

Two most common crystal structures in metals and metal alloys are body-centered cubic (bcc) and face-centered cubic (fcc) structures. The phase transitions between these structures play an important role in the production of durable and functional metal alloys. Despite their technological significance, the details of such phase transitions are largely unknown because of the challenges associated with probing these processes. Here, we describe the nanoscopic details of an fcc-to-bcc phase transition in PdCu alloy nanoparticles (NPs) using in situ heating transmission electron microscopy. Our observations reveal that the bcc phase always nucleates from the edge of the fcc NP, and then propagates across the NP by forming a distinct few-atoms-wide coherent bcc-fcc interface. Notably, this interface acts as an intermediate precursor phase for the nucleation of a bcc phase. These insights into the fcc-to-bcc phase transition are important for understanding solid - solid phase transitions in general and can help to tailor the functional properties of metals and their alloys.

5.
ACS Appl Energy Mater ; 5(5): 5404-5414, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35647491

ABSTRACT

For successful long-term deployment and operation of kesterites Cu2ZnSn(S x Se1-x )4 (CZTSSe) as light-absorber materials for photovoltaics, device stability and recovery in kesterite solar cells are investigated. A low-temperature heat treatment is applied to overcome the poor charge extraction that developed in the natural aging process. It is suggested that defect states at aged CZTSSe/CdS heterojunctions were reduced, while apparent doping density in the CZTSSe absorber increased due to Cd/Zn interdiffusion at the heterojunction during the annealing process. In situ annealing experiments in a transmission electron microscope were used to investigate the elemental diffusion at the CZTSSe/CdS heterojunction. This study reveals the critical role of heat treatment to enhance the absorber/Mo back contact, improve the quality of the absorber/buffer heterojunction, and recover the device performance in aged kesterite thin-film solar cells.

6.
Nano Lett ; 21(21): 9262-9269, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34719932

ABSTRACT

Conductive filaments (CFs) play a critical role in the mechanism of resistive random-access memory (ReRAM) devices. However, in situ detection and visualization of the precise location of CFs are still key challenges. We demonstrate for the first time the use of a π-conjugated molecule which can transform between its twisted and planar states upon localized Joule heating generated within filament regions, thus reflecting the locations of the underlying CFs. Customized patterns of CFs were induced and observed by the π-conjugated molecule layer, which confirmed the hypothesis. Additionally, statistical studies on filaments distribution were conducted to study the effect of device sizes and bottom electrode heights, which serves to enhance the understanding of switching behavior and their variability at device level. Therefore, this approach has great potential in aiding the development of ReRAM technology.

7.
Acc Chem Res ; 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34339603

ABSTRACT

ConspectusIn this Account, we describe the challenges and promising applications of transmission electron microscopy (TEM) imaging and spectroscopy at cryogenic temperatures. Our work focuses on two areas of application: the delay of electron-beam-induced degradation and following low-temperature phenomena in a continuous and variable temperature range. For the former, we present a study of LiMn1.5Ni0.5O4 lithium ion battery cathode material that undergoes electron beam-induced degradation when studied at room temperature by TEM. Cryogenic imaging reveals the true structure of LiMn1.5Ni0.5O4 nanoparticles in their discharged state. Improved stability under electron beam irradiation was confirmed by following the evolution of the O K-edge fine structure by electron energy-loss spectroscopy. Our results demonstrate that the effect of radiation damage on discharged LiMn1.5Ni0.5O4 was previously underestimated and that atomic-resolution imaging at cryogenic temperature has a potential to be generalized to most of the Li-based materials and beyond. For the latter, we present two studies in the imaging of low-temperature phenomena on the local scale, namely, the evolution of ferroelectric and ferromagnetic domains walls, in BaTiO3 and Y3Fe5O12 systems, respectively, in a continuous and variable temperature range. Continuous imaging of the phase transition in BaTiO3, a prototypical ferroelectric system, from the low-temperature orthorhombic phase continuously up to the centrosymmetric high-temperature phase is shown to be possible inside a TEM. Similarly, the propagation of domain walls in Y3Fe5O12, a magnetic insulator, is studied from ∼120 to ∼400 K and combined with the application of a magnetic field and electrical current pulses to mimic the operando conditions as in domain wall memory and logic devices for information technology. Such studies are promising for studying the pinning of the ferroelectric and magnetic domains versus temperature, spin-polarized current, and externally applied magnetic field to better manipulate the domain walls. The capability of combining operando TEM stimuli such as current, voltage, and/or magnetic field with in situ TEM imaging in a continuous cryogenic temperature range will allow the uncovering of fundamental phenomena on the nanometer scale. These studies were made possible using a MEMS-based TEM holder that allowed an electron-transparent sample to be transferred and electrically contacted on a MEMS chip. The six-contact double-tilt holder allows the alignment of the specimen into its zone axis while simultaneously using four electrical contacts to regulate the temperature and two contacts to apply the electrical stimuli, i.e., operando TEM imaging. This Account leads to the demonstration of (i) the high-resolution imaging and spectroscopy of nanoparticles oriented in the desired [110] zone-axis direction at cryogenic temperatures to mitigate the electron beam degradation, (ii) imaging of low-temperature transitions with accurate and continuous control of the temperature that allowed single-frame observation of the presence of both the orthorhombic and tetragonal phases in the BaTiO3 system, and (iii) magnetic domain wall propagation as a function of temperature, magnetic field, and current pulses (100 ns with a 100 kHz repetition rate) in the Y3Fe5O12 system.

8.
ACS Appl Mater Interfaces ; 12(37): 41802-41809, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32819087

ABSTRACT

The atomically flat interface of the Y3Fe5O12 (YIG) thin film and the Gd3Ga5O12 (GGG) substrate plays a vital role in obtaining the magnetization dynamics of YIG below and above the anisotropy field. Here, magnetoimpedance (MI) is used to investigate the magnetization dynamics in fully epitaxial 45 nm YIG thin films grown on the GGG (001) substrates using a copper strip coil in the MHz-GHz frequency region. The resistance (R) and reactance (X), which are components of impedance (Z), allow us to probe the absorptive and dispersive components of the dynamic permeability, whereas a conventional spectrometer only measures the field derivative of the power absorbed. The distinct excitation modes arising from the resonance in the uniform and dragged magnetization states of YIG are respectively observed above and below the anisotropy field. The magnetodynamics clearly shows the visible dichotomy between two resonant fields below and above the anisotropy field and its motion as a function of the direction of the applied magnetic field. A low value of a damping factor of ∼4.7 - 6.1 × 10-4 is estimated for uniform excitation mode with an anisotropy field of 65 ± 2 Oe. Investigation of below and above anisotropy field-dependent magnetodynamics in the low-frequency mode can be useful in designing the YIG-based resonators, oscillators, filters, and magnonic devices.

9.
RSC Adv ; 10(47): 27954-27960, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-35519142

ABSTRACT

It is now well-established that boundaries separating tetragonal-like (T) and rhombohedral-like (R) phases in BiFeO3 thin films can show enhanced electrical conductivity. However, the origin of this conductivity remains elusive. Here, we study mixed-phase BiFeO3 thin films, where local populations of T and R can be readily altered using stress and electric fields. We observe that phase boundary electrical conductivity in regions which have undergone stress-writing is significantly greater than in the virgin microstructure. We use high-end electron microscopy techniques to identify key differences between the R-T boundaries present in stress-written and as-grown microstructures, to gain a better understanding of the mechanism responsible for electrical conduction. We find that point defects (and associated mixed valence states) are present in both electrically conducting and non-conducting regions; crucially, in both cases, the spatial distribution of defects is relatively homogeneous: there is no evidence of phase boundary defect aggregation. Atomic resolution imaging reveals that the only significant difference between non-conducting and conducting boundaries is the elastic distortion evident - detailed analysis of localised crystallography shows that the strain accommodation across the R-T boundaries is much more extensive in stress-written than in as-grown microstructures; this has a substantial effect on the straightening of local bonds within regions seen to electrically conduct. This work therefore offers distinct evidence that the elastic distortion is more important than point defect accumulation in determining the phase boundary conduction properties in mixed-phase BiFeO3.

10.
Ultramicroscopy ; 209: 112877, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31884381

ABSTRACT

A multi-modal and multi-scale non-local means (M3S-NLM) method is proposed to extract atomically resolved spectroscopic maps from low signal-to-noise (SNR) datasets recorded with a transmission electron microscope. This method improves upon previously tested denoising techniques as it takes into account the correlation between the dark-field signal recorded simultaneously with the spectroscopic dataset without compromising on the spatial resolution. The M3S-NLM method was applied to electron energy dispersive X-ray and electron-energy-loss spectroscopy (EELS) datasets. We illustrate the retrieval of the atomic scale diffusion process in an Al1-xInxN alloy grown on GaN and the surface oxidation state of perovskite nanocatalysts. The improved SNR of the EELS dataset also allows the retrieval of atomically resolved oxidation maps considering the fine structure absorption edge of LaMnO3 nanoparticles.

11.
J Am Chem Soc ; 141(17): 7202-7210, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30986043

ABSTRACT

Liquid-liquid phase separation (LLPS) of proteins into concentrated microdroplets (also called coacervation) is a phenomenon that is increasingly recognized to occur in many biological processes, both inside and outside the cell. While it has been established that LLPS can be described as a spinodal decomposition leading to demixing of an initially homogeneous protein solution, little is known about the assembly pathways by which soluble proteins aggregate into dense microdroplets. Using recent developments in techniques enabling the observation of matter suspended in liquid by transmission electron microscopy, we observed how a model intrinsically disordered protein phase-separates in liquid environment. Our observations reveal the dynamic mechanisms by which soluble proteins self-organize into condensed microdroplets with nanoscale and millisecond space and time resolution, respectively. With this method, the nucleation and initial growth steps of LLPS could be captured, opening the door for a deeper understanding of biomacromolecular complexes exhibiting LLPS ability.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Nanostructures/chemistry , Phase Transition , Animals , Biochemical Phenomena , Decapodiformes/chemistry , Microscopy, Electron, Transmission/methods , Protein Multimerization
12.
Proc Natl Acad Sci U S A ; 116(18): 8685-8692, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30975751

ABSTRACT

Biomineralization, the process by which mineralized tissues grow and harden via biogenic mineral deposition, is a relatively lengthy process in many mineral-producing organisms, resulting in challenges to study the growth and biomineralization of complex hard mineralized tissues. Arthropods are ideal model organisms to study biomineralization because they regularly molt their exoskeletons and grow new ones in a relatively fast timescale, providing opportunities to track mineralization of entire tissues. Here, we monitored the biomineralization of the mantis shrimp dactyl club-a model bioapatite-based mineralized structure with exceptional mechanical properties-immediately after ecdysis until the formation of the fully functional club and unveil an unusual development mechanism. A flexible membrane initially folded within the club cavity expands to form the new club's envelope. Mineralization proceeds inwards by mineral deposition from this membrane, which contains proteins regulating mineralization. Building a transcriptome of the club tissue and probing it with proteomic data, we identified and sequenced Club Mineralization Protein 1 (CMP-1), an abundant mildly phosphorylated protein from the flexible membrane suggested to be involved in calcium phosphate mineralization of the club, as indicated by in vitro studies using recombinant CMP-1. This work provides a comprehensive picture of the development of a complex hard tissue, from the secretion of its organic macromolecular template to the formation of the fully functional club.


Subject(s)
Calcification, Physiologic/physiology , Crustacea/physiology , Animals , Calcium Phosphates/metabolism , Proteomics
13.
Nanoscale ; 10(41): 19638, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30307010

ABSTRACT

Correction for 'Giant resistive switching in mixed phase BiFeO3via phase population control' by David Edwards et al., Nanoscale, 2018, 10, 17629-17637.

14.
Nanoscale ; 10(37): 17629-17637, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30204201

ABSTRACT

Highly-strained coherent interfaces, between rhombohedral-like (R) and tetragonal-like (T) phases in BiFeO3 thin films, often show enhanced electrical conductivity in comparison to non-interfacial regions. In principle, changing the population and distribution of these interfaces should therefore allow different resistance states to be created. However, doing this controllably has been challenging to date. Here, we show that local thin film phase microstructures (and hence R-T interface densities) can be changed in a thermodynamically predictable way (predictions made using atomistic simulations) by applying different combinations of mechanical stress and electric field. We use both pressure and electric field to reversibly generate metastable changes in microstructure that result in very large changes of resistance of up to 108%, comparable to those seen in Tunnelling Electro-Resistance (TER) devices.

15.
Adv Mater ; 30(8)2018 Feb.
Article in English | MEDLINE | ID: mdl-29318716

ABSTRACT

Layered transition metal (Ti, Ta, Nb, etc.) dichalcogenides are important prototypes for the study of the collective charge density wave (CDW). Reducing the system dimensionality is expected to lead to novel properties, as exemplified by the discovery of enhanced CDW order in ultrathin TiSe2 . However, the syntheses of monolayer and large-area 2D CDW conductors can currently only be achieved by molecular beam epitaxy under ultrahigh vacuum. This study reports the growth of monolayer crystals and up to 5 × 105 µm2 large films of the typical 2D CDW conductor-TiSe2 -by ambient-pressure chemical vapor deposition. Atomic resolution scanning transmission electron microscopy indicates the as-grown samples are highly crystalline 1T-phase TiSe2 . Variable-temperature Raman spectroscopy shows a CDW phase transition temperature of 212.5 K in few layer TiSe2 , indicative of high crystal quality. This work not only allows the exploration of many-body state of TiSe2 in 2D limit but also offers the possibility of utilizing large-area TiSe2 in ultrathin electronic devices.

16.
Ultramicroscopy ; 185: 81-89, 2018 02.
Article in English | MEDLINE | ID: mdl-29223803

ABSTRACT

Off-axis electron holography allows both the amplitude and the phase shift of an electron wavefield propagating through a specimen in a transmission electron microscope to be recovered. The technique requires the use of an electron biprism to deflect an object wave and a reference wave to form an interference pattern. Here, we introduce an approach based on semiconductor processing technology to fabricate fine electron biprisms with rectangular cross-sections. By performing electrostatic calculations and preliminary experiments, we demonstrate that such biprisms promise improved performance for electron holography experiments.

17.
Ultramicroscopy ; 181: 191-196, 2017 10.
Article in English | MEDLINE | ID: mdl-28609665

ABSTRACT

It has recently been shown that an electron vortex beam can be generated by the magnetic field surrounding the tip of a dipole-like magnet. This approach can be described using the magnetic Aharonov-Bohm effect and is associated with the fact that the end of a long magnetic rod can be treated approximately as a magnetic monopole. However, it is difficult to vary the magnetisation of the rod in such a setup and the electron beam vorticity is fixed for a given tip shape. Here, we show how a similar behaviour, which has the advantage of easy tuneability, can be achieved by making use of the electrostatic Aharonov-Bohm effect associated with an electrostatic dipole line. We highlight the analogies between the magnetic and electrostatic cases and use simulations of in-focus, Fresnel and Fraunhofer images to show that a device based on two parallel, oppositely charged lines that each have a constant charge density can be used to generate a tuneable electron vortex beam. We assess the effect of using a dipole line that has a finite length and show that if the charge densities on the two lines are different then an additional biprism-like effect is superimposed on the electron-optical phase.

18.
Sci Rep ; 7: 45484, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28358051

ABSTRACT

Magnetite nanoparticles exhibit magnetic properties that are size and organization dependent and, for applications that rely on their magnetic state, they usually have to be monodisperse. Forming such particles, however, has remained a challenge. Here, we synthesize 40 nm particles of magnetite in the presence of polyarginine and show that they are composed of 10 nm building blocks, yet diffract like single crystals. We use both bulk magnetic measurements and magnetic induction maps recorded from individual particles using off-axis electron holography to show that each 40 nm particle typically contains a single magnetic domain. The magnetic state is therefore determined primarily by the size of the superstructure and not by the sizes of the constituent sub-units. Our results fundamentally demonstrate the structure - property relationship in a magnetic mesoparticle.


Subject(s)
Magnetite Nanoparticles/ultrastructure , Ferrosoferric Oxide/chemistry , Holography , Magnetite Nanoparticles/chemistry , Microscopy, Electron, Transmission , Neutron Diffraction , Particle Size , Peptides/chemistry , Scattering, Small Angle , X-Ray Diffraction
19.
Ultramicroscopy ; 178: 38-47, 2017 07.
Article in English | MEDLINE | ID: mdl-27554459

ABSTRACT

The phase and amplitude of the electron wavefunction that has passed through ultra-thin flakes of WSe2 is measured from high-resolution off-axis electron holograms. Both the experimental measurements and corresponding computer simulations are used to show that, as a result of dynamical diffraction, the spatially averaged phase does not increase linearly with specimen thickness close to an [001] zone axis orientation even when the specimen has a thickness of only a few layers. It is then not possible to infer the local specimen thickness of the WSe2 from either the phase or the amplitude alone. Instead, we show that the combined analysis of phase and amplitude from experimental measurements and simulations allows an accurate determination of the local specimen thickness. The relationship between phase and projected potential is shown to be approximately linear for extremely thin specimens that are tilted by several degrees in certain directions from the [001] zone axis. A knowledge of the specimen thickness then allows the electrostatic potential to be determined from the measured phase. By using this combined approach, we determine a value for the mean inner potential of WSe2 of 18.9±0.8V, which is 12% lower than the value calculated from neutral atom scattering factors.

20.
Nano Lett ; 16(11): 7013-7018, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27775887

ABSTRACT

Changes in the nanostructure of methylammonium lead iodide (MAPbI3) perovskite solar cells are assessed as a function of current-voltage stimulus by biasing thin samples in situ in a transmission electron microscope. Various degradation pathways are identified both in situ and ex situ, predominantly at the positively biased MAPbI3 interface. Iodide migrates into the positively biased charge transport layer and also volatilizes along with organic species, which triggers the nucleation of PbI2 nanoparticles and voids and hence decreases the cell performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...