Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Methods Mol Biol ; 1436: 109-18, 2016.
Article in English | MEDLINE | ID: mdl-27246211

ABSTRACT

Epigenetic mechanisms underlie the morphological transformations and shifts in virulence of eukaryotic pathogens. The targeting of epigenetics-driven cellular programs thus represents an Achilles' heel of human parasites. Today, zinc-dependent histone deacetylases (HDACs) belong to the most explored epigenetic drug targets in eukaryotic parasites. Here, we describe an optimized protocol for the large-scale overproduction and purification of recombinant smHDAC8, an emerging epigenetic drug target in the multicellular human-pathogenic flatworm Schistosoma mansoni. The strategy employs the robustness of recombinant expression in Escherichia coli together with initial purification through a poly-histidine affinity tag that can be removed by the thrombin protease. This protocol is divided into two steps: (1) large-scale production of smHDAC8 in E. coli, and (2) purification of the target smHDAC8 protein through multiple purification steps.


Subject(s)
Histone Deacetylases/genetics , Protein Engineering/methods , Repressor Proteins/genetics , Schistosoma mansoni/genetics , Animals , Epigenesis, Genetic , Escherichia coli/genetics , Escherichia coli/growth & development , Histone Deacetylases/metabolism , Humans , Organisms, Genetically Modified , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Repressor Proteins/metabolism
2.
J Med Chem ; 59(6): 2423-35, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26937828

ABSTRACT

Schistosomiasis is a major neglected parasitic disease that affects more than 265 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. In this study, a series of new benzohydroxamates were prepared as potent inhibitors of Schistosoma mansoni histone deacetylase 8 (smHDAC8). Crystallographic analysis provided insights into the inhibition mode of smHDAC8 activity by these 3-amidobenzohydroxamates. The newly designed inhibitors were evaluated in screens for enzyme inhibitory activity against schistosome and human HDACs. Twenty-seven compounds were found to be active in the nanomolar range, and some of them showed selectivity toward smHDAC8 over the major human HDACs (1 and 6). The active benzohydroxamates were additionally screened for lethality against the schistosome larval stage using a fluorescence-based assay. Four of these showed significant dose-dependent killing of the schistosome larvae and markedly impaired egg laying of adult worm pairs maintained in culture.


Subject(s)
Helminth Proteins/drug effects , Histone Deacetylases/drug effects , Schistosoma mansoni/drug effects , Schistosomicides/chemical synthesis , Schistosomicides/pharmacology , Animals , Dose-Response Relationship, Drug , Drug Delivery Systems , Humans , Larva , Models, Molecular , Schistosoma mansoni/genetics , Schistosomiasis mansoni/drug therapy , Structure-Activity Relationship , Substrate Specificity , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL