Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Environ Health ; 22(1): 29, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36967400

ABSTRACT

BACKGROUND: Long-term exposure to air pollution and noise is detrimental to health; but studies that evaluated both remain limited. This study explores associations with natural and cause-specific mortality for a range of air pollutants and transportation noise. METHODS: Over 4 million adults in Switzerland were followed from 2000 to 2014. Exposure to PM2.5, PM2.5 components (Cu, Fe, S and Zn), NO2, black carbon (BC) and ozone (O3) from European models, and transportation noise from source-specific Swiss models, were assigned at baseline home addresses. Cox proportional hazards models, adjusted for individual and area-level covariates, were used to evaluate associations with each exposure and death from natural, cardiovascular (CVD) or non-malignant respiratory disease. Analyses included single and two exposure models, and subset analysis to study lower exposure ranges. RESULTS: During follow-up, 661,534 individuals died of natural causes (36.6% CVD, 6.6% respiratory). All exposures including the PM2.5 components were associated with natural mortality, with hazard ratios (95% confidence intervals) of 1.026 (1.015, 1.038) per 5 µg/m3 PM2.5, 1.050 (1.041, 1.059) per 10 µg/m3 NO2, 1.057 (1.048, 1.067) per 0.5 × 10-5/m BC and 1.045 (1.040, 1.049) per 10 dB Lden total transportation noise. NO2, BC, Cu, Fe and noise were consistently associated with CVD and respiratory mortality, whereas PM2.5 was only associated with CVD mortality. Natural mortality associations persisted < 20 µg/m3 for PM2.5 and NO2, < 1.5 10-5/m BC and < 53 dB Lden total transportation noise. The O3 association was inverse for all outcomes. Including noise attenuated all outcome associations, though many remained significant. Across outcomes, noise was robust to adjustment to air pollutants (e.g. natural mortality 1.037 (1.033, 1.042) per 10 dB Lden total transportation noise, after including BC). CONCLUSION: Long-term exposure to air pollution and transportation noise in Switzerland contribute to premature mortality. Considering co-exposures revealed the importance of local traffic-related pollutants such as NO2, BC and transportation noise.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Noise, Transportation , Humans , Adult , Air Pollutants/adverse effects , Air Pollutants/analysis , Switzerland/epidemiology , Cause of Death , Nitrogen Dioxide/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Cohort Studies , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis
2.
Environ Res ; 160: 247-255, 2018 01.
Article in English | MEDLINE | ID: mdl-29031214

ABSTRACT

Oxidative potential (OP) of particulate matter (PM) is proposed as a biologically-relevant exposure metric for studies of air pollution and health. We aimed to evaluate the spatial variability of the OP of measured PM2.5 using ascorbate (AA) and (reduced) glutathione (GSH), and develop land use regression (LUR) models to explain this spatial variability. We estimated annual average values (m-3) of OPAA and OPGSH for five areas (Basel, CH; Catalonia, ES; London-Oxford, UK (no OPGSH); the Netherlands; and Turin, IT) using PM2.5 filters. OPAA and OPGSH LUR models were developed using all monitoring sites, separately for each area and combined-areas. The same variables were then used in repeated sub-sampling of monitoring sites to test sensitivity of variable selection; new variables were offered where variables were excluded (p > .1). On average, measurements of OPAA and OPGSH were moderately correlated (maximum Pearson's maximum Pearson's R = = .7) with PM2.5 and other metrics (PM2.5absorbance, NO2, Cu, Fe). HOV (hold-out validation) R2 for OPAA models was .21, .58, .45, .53, and .13 for Basel, Catalonia, London-Oxford, the Netherlands and Turin respectively. For OPGSH, the only model achieving at least moderate performance was for the Netherlands (R2 = .31). Combined models for OPAA and OPGSH were largely explained by study area with weak local predictors of intra-area contrasts; we therefore do not endorse them for use in epidemiologic studies. Given the moderate correlation of OPAA with other pollutants, the three reasonably performing LUR models for OPAA could be used independently of other pollutant metrics in epidemiological studies.


Subject(s)
Environmental Monitoring , Models, Theoretical , Particulate Matter/analysis , Environment , Europe , Oxidation-Reduction , Regression Analysis
3.
Environ Sci Technol ; 51(6): 3336-3345, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28244744

ABSTRACT

Long-term ultrafine particle (UFP) exposure estimates at a fine spatial scale are needed for epidemiological studies. Land use regression (LUR) models were developed and evaluated for six European areas based on repeated 30 min monitoring following standardized protocols. In each area; Basel (Switzerland), Heraklion (Greece), Amsterdam, Maastricht, and Utrecht ("The Netherlands"), Norwich (United Kingdom), Sabadell (Spain), and Turin (Italy), 160-240 sites were monitored to develop LUR models by supervised stepwise selection of GIS predictors. For each area and all areas combined, 10 models were developed in stratified random selections of 90% of sites. UFP prediction robustness was evaluated with the intraclass correlation coefficient (ICC) at 31-50 external sites per area. Models from Basel and The Netherlands were validated against repeated 24 h outdoor measurements. Structure and model R2 of local models were similar within, but varied between areas (e.g., 38-43% Turin; 25-31% Sabadell). Robustness of predictions within areas was high (ICC 0.73-0.98). External validation R2 was 53% in Basel and 50% in The Netherlands. Combined area models were robust (ICC 0.93-1.00) and explained UFP variation almost equally well as local models. In conclusion, robust UFP LUR models could be developed on short-term monitoring, explaining around 50% of spatial variance in longer-term measurements.


Subject(s)
Air Pollution , Particulate Matter , Air Pollutants , Environmental Monitoring , Models, Theoretical
4.
Environ Health Perspect ; 124(11): 1700-1706, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27258721

ABSTRACT

BACKGROUND: Subclinical atherosclerosis has been associated with long-term exposure to particulate matter (PM), but the relevance of particle size and sources of exposure remains unclear. OBJECTIVES: We investigated the association of long-term exposure to PM10 (≤ 10 µm), PM2.5 (≤ 2.5 µm: total mass, vehicular, and crustal sources), and ultrafine particles [UFP < 0.1 µm: particle number concentration (PNC) and lung-deposited surface area (LDSA)] with carotid intima-media thickness (CIMT). METHODS: We used data from 1,503 participants ≥ 50 years old who participated in the third examination of the Swiss SAPALDIA cohort. Exposures were obtained from dispersion models and land-use regression models. Covariate information, including previous cardiovascular risk factors, was obtained from the second and third SAPALDIA examinations. RESULTS: The adjusted percent difference in CIMT associated with an exposure contrast between the 10th and 90th percentile was 1.58% (95% CI: -0.30, 3.47%) for PM10, 2.10% (95% CI: 0.04, 4.16%) for PM2.5, 1.67% (95% CI: -0.13, 3.48%) for the vehicular source of PM2.5, -0.58% (95% CI: -3.95, 2.79%) for the crustal source of PM2.5, 2.06% (95% CI: 0.03, 4.10%) for PNC, and 2.32% (95% CI: 0.23, 4.40%) for LDSA. Stronger associations were observed among diabetics, subjects with low-educational level, and those at higher cardiovascular risk. CONCLUSIONS: CIMT was associated with exposure to PM10, PM2.5, and UFP. The PM2.5 source-specific analysis showed a positive association for the vehicular source but not for the crustal source. Although the effects of PNC and LDSA were similar in magnitude, two-pollutant and residual-based models suggested that LDSA may be a better marker for the health relevance of UFP. Citation: Aguilera I, Dratva J, Caviezel S, Burdet L, de Groot E, Ducret-Stich RE, Eeftens M, Keidel D, Meier R, Perez L, Rothe T, Schaffner E, Schmit-Trucksäss A, Tsai MY, Schindler C, Künzli N, Probst-Hensch N. 2016. Particulate matter and subclinical atherosclerosis: associations between different particle sizes and sources with carotid intima-media thickness in the SAPALDIA study. Environ Health Perspect 124:1700-1706; http://dx.doi.org/10.1289/EHP161.


Subject(s)
Atherosclerosis/etiology , Carotid Intima-Media Thickness , Environmental Exposure , Particulate Matter/toxicity , Aged , Aged, 80 and over , Cohort Studies , Educational Status , Female , Humans , Male , Middle Aged , Particle Size , Particulate Matter/analysis , Particulate Matter/chemistry , Switzerland
5.
Environ Health ; 15: 53, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27089921

ABSTRACT

BACKGROUND: Land Use Regression (LUR) is a popular method to explain and predict spatial contrasts in air pollution concentrations, but LUR models for ultrafine particles, such as particle number concentration (PNC) are especially scarce. Moreover, no models have been previously presented for the lung deposited surface area (LDSA) of ultrafine particles. The additional value of ultrafine particle metrics has not been well investigated due to lack of exposure measurements and models. METHODS: Air pollution measurements were performed in 2011 and 2012 in the eight areas of the Swiss SAPALDIA study at up to 40 sites per area for NO2 and at 20 sites in four areas for markers of particulate air pollution. We developed multi-area LUR models for biannual average concentrations of PM2.5, PM2.5 absorbance, PM10, PMcoarse, PNC and LDSA, as well as alpine, non-alpine and study area specific models for NO2, using predictor variables which were available at a national level. Models were validated using leave-one-out cross-validation, as well as independent external validation with routine monitoring data. RESULTS: Model explained variance (R(2)) was moderate for the various PM mass fractions PM2.5 (0.57), PM10 (0.63) and PMcoarse (0.45), and was high for PM2.5 absorbance (0.81), PNC (0.87) and LDSA (0.91). Study-area specific LUR models for NO2 (R(2) range 0.52-0.89) outperformed combined-area alpine (R (2) = 0.53) and non-alpine (R (2) = 0.65) models in terms of both cross-validation and independent external validation, and were better able to account for between-area variability. Predictor variables related to traffic and national dispersion model estimates were important predictors. CONCLUSIONS: LUR models for all pollutants captured spatial variability of long-term average concentrations, performed adequately in validation, and could be successfully applied to the SAPALDIA cohort. Dispersion model predictions or area indicators served well to capture the between area variance. For NO2, applying study-area specific models was preferable over applying combined-area alpine/non-alpine models. Correlations between pollutants were higher in the model predictions than in the measurements, so it will remain challenging to disentangle their health effects.


Subject(s)
Air Pollutants/analysis , Lung/anatomy & histology , Models, Theoretical , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Air Pollution/analysis , Altitude , Geographic Information Systems , Humans , Population Density , Regression Analysis , Surface Properties , Switzerland
6.
Environ Int ; 84: 181-92, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26342569

ABSTRACT

An increasing number of epidemiological studies suggest that adverse health effects of air pollution may be related to particulate matter (PM) composition, particularly trace metals. However, we lack comprehensive data on the spatial distribution of these elements. We measured PM2.5 and PM10 in twenty study areas across Europe in three seasonal two-week periods over a year using Harvard impactors and standardized protocols. In each area, we selected street (ST), urban (UB) and regional background (RB) sites (totaling 20) to characterize local spatial variability. Elemental composition was determined by energy-dispersive X-ray fluorescence analysis of all PM2.5 and PM10 filters. We selected a priori eight (Cu, Fe, K, Ni, S, Si, V, Zn) well-detected elements of health interest, which also roughly represented different sources including traffic, industry, ports, and wood burning. PM elemental composition varied greatly across Europe, indicating different regional influences. Average street to urban background ratios ranged from 0.90 (V) to 1.60 (Cu) for PM2.5 and from 0.93 (V) to 2.28 (Cu) for PM10. Our selected PM elements were variably correlated with the main pollutants (PM2.5, PM10, PM2.5 absorbance, NO2 and NOx) across Europe: in general, Cu and Fe in all size fractions were highly correlated (Pearson correlations above 0.75); Si and Zn in the coarse fractions were modestly correlated (between 0.5 and 0.75); and the remaining elements in the various size fractions had lower correlations (around 0.5 or below). This variability in correlation demonstrated the distinctly different spatial distributions of most of the elements. Variability of PM10_Cu and Fe was mostly due to within-study area differences (67% and 64% of overall variance, respectively) versus between-study area and exceeded that of most other traffic-related pollutants, including NO2 and soot, signaling the importance of non-tailpipe (e.g., brake wear) emissions in PM.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Particulate Matter/analysis , Analysis of Variance , Cities , Environmental Monitoring/methods , Europe , Humans , Spectrometry, X-Ray Emission
7.
Environ Int ; 82: 85-91, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26070024

ABSTRACT

Given the shrinking spatial contrasts in outdoor air pollution in Switzerland and the trends toward tightly insulated buildings, the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) needs to understand to what extent outdoor air pollution remains a determinant for residential indoor exposure. The objectives of this paper are to identify determining factors for indoor air pollution concentrations of particulate matter (PM), ultrafine particles in the size range from 15 to 300nm, black smoke measured as light absorbance of PM (PMabsorbance) and nitrogen dioxide (NO2) and to develop predictive indoor models for SAPALDIA. Multivariable regression models were developed based on indoor and outdoor measurements among homes of selected SAPALDIA participants in three urban (Basel, Geneva, Lugano) and one rural region (Wald ZH) in Switzerland, various home characteristics and reported indoor sources such as cooking. Outdoor levels of air pollutants were important predictors for indoor air pollutants, except for the coarse particle fraction. The fractions of outdoor concentrations infiltrating indoors were between 30% and 66%, the highest one was observed for PMabsorbance. A modifying effect of open windows was found for NO2 and the ultrafine particle number concentration. Cooking was associated with increased particle and NO2 levels. This study shows that outdoor air pollution remains an important determinant of residential indoor air pollution in Switzerland.


Subject(s)
Air Pollution, Indoor/analysis , Adult , Air Pollutants/analysis , Air Pollution , Cohort Studies , Cooking , Environmental Monitoring , Female , Housing , Humans , Male , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Regression Analysis , Switzerland
8.
Environ Res ; 140: 377-84, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25935318

ABSTRACT

Many studies have documented adverse health effects of long-term exposure to fine particulate matter (PM2.5), but there is still limited knowledge regarding the causal relationship between specific sources of PM2.5 and such health effects. The spatial variability of PM2.5 constituents and sources, as a exposure assessment strategy for investigating source contributions to health effects, has been little explored so far. Between 2011 and 2012, three measurement campaigns of PM and nitrogen dioxide (NO2) were performed in 80 sites across four areas of the Swiss Study on Air Pollution and Lung and heart Diseases in Adults (SAPALDIA). Reflectance analysis and energy dispersive X-ray fluorescence (XRF) were performed on PM2.5 filter samples to estimate light absorbance and trace element concentrations, respectively. Three air pollution source factors were identified using principal-component factor analysis: vehicular, crustal, and long-range transport. Land use regression (LUR) models were developed for temporally-adjusted scores of each factor, combining the four study areas. Model performance was assessed using two cross-validation methods. Model explained variance was high for the vehicular factor (R(2)=0.76), moderate for the crustal factor (R(2)=0.46), and low for the long-range transport factor (R(2)=0.19). The cross-validation methods suggested that models for the vehicular and crustal factors moderately accounted for both the between and within-area variability, and therefore can be applied to the four study areas to estimate long-term exposures within the SAPALDIA study population. The combination of source apportionment techniques and LUR modelling may help in identifying air pollution sources and disentangling their contribution to observed health effects in epidemiologic studies.


Subject(s)
Particulate Matter , Regression Analysis , Vehicle Emissions
9.
Environ Health Perspect ; 123(6): 613-21, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25712593

ABSTRACT

BACKGROUND: Short-term exposure to air pollution has adverse effects among patients with asthma, but whether long-term exposure to air pollution is a cause of adult-onset asthma is unclear. OBJECTIVE: We aimed to investigate the association between air pollution and adult onset asthma. METHODS: Asthma incidence was prospectively assessed in six European cohorts. Exposures studied were annual average concentrations at home addresses for nitrogen oxides assessed for 23,704 participants (including 1,257 incident cases) and particulate matter (PM) assessed for 17,909 participants through ESCAPE land-use regression models and traffic exposure indicators. Meta-analyses of cohort-specific logistic regression on asthma incidence were performed. Models were adjusted for age, sex, overweight, education, and smoking and included city/area within each cohort as a random effect. RESULTS: In this longitudinal analysis, asthma incidence was positively, but not significantly, associated with all exposure metrics, except for PMcoarse. Positive associations of borderline significance were observed for nitrogen dioxide [adjusted odds ratio (OR) = 1.10; 95% CI: 0.99, 1.21 per 10 µg/m3; p = 0.10] and nitrogen oxides (adjusted OR = 1.04; 95% CI: 0.99, 1.08 per 20 µg/m3; p = 0.08). Nonsignificant positive associations were estimated for PM10 (adjusted OR = 1.04; 95% CI: 0.88, 1.23 per 10 µg/m3), PM2.5 (adjusted OR = 1.04; 95% CI: 0.88, 1.23 per 5 µg/m3), PM2.5absorbance (adjusted OR = 1.06; 95% CI: 0.95, 1.19 per 10-5/m), traffic load (adjusted OR = 1.10; 95% CI: 0.93, 1.30 per 4 million vehicles × meters/day on major roads in a 100-m buffer), and traffic intensity (adjusted OR = 1.10; 95% CI: 0.93, 1.30 per 5,000 vehicles/day on the nearest road). A nonsignificant negative association was estimated for PMcoarse (adjusted OR = 0.98; 95% CI: 0.87, 1.14 per 5 µg/m3). CONCLUSIONS: Results suggest a deleterious effect of ambient air pollution on asthma incidence in adults. Further research with improved personal-level exposure assessment (vs. residential exposure assessment only) and phenotypic characterization is needed.


Subject(s)
Air Pollutants/analysis , Asthma/epidemiology , Environmental Exposure , Adult , Aged , Aged, 80 and over , Asthma/chemically induced , Europe/epidemiology , Female , Follow-Up Studies , Humans , Incidence , Logistic Models , Male , Middle Aged , Nitrogen Oxides/analysis , Particulate Matter/analysis , Prospective Studies , Young Adult
10.
J Expo Sci Environ Epidemiol ; 25(5): 499-505, 2015.
Article in English | MEDLINE | ID: mdl-25670021

ABSTRACT

Indoor air quality is a growing concern as we spend the majority of time indoors and as new buildings are increasingly airtight for energy saving purposes. For a better understanding of residential indoor air pollution in Switzerland we conducted repeated 1-2-week-long indoor and outdoor measurements of particle number concentrations (PNC), particulate matter (PM), light absorbance of PM2.5 (PMabsorbance) and nitrogen dioxide (NO2). Residents of all homes were enrolled in the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA). Indoor levels were comparable in urban areas and generally low in rural homes. Average indoor levels were 7800 particles/cm(3) (interquartile range=7200); 8.7 µg/m(3) (6.5) PM2.5 and 10.2 µg/m(3) (11.2) NO2. All pollutants showed large variability of indoor/outdoor ratios between sites. We observed similar diurnal patterns for indoor and outdoor PNC. Nevertheless, the correlation of average indoor and outdoor PNC between sites as well as longitudinal indoor/outdoor correlations within sites were low. Our results show that a careful evaluation of home characteristics is needed when estimating indoor exposure to pollutants with outdoor origin.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Cohort Studies , Housing , Humans , Linear Models , Particle Size , Rural Population , Seasons , Switzerland , Tobacco Smoke Pollution/analysis , Urban Population
11.
J Expo Sci Environ Epidemiol ; 25(5): 474-81, 2015.
Article in English | MEDLINE | ID: mdl-25492241

ABSTRACT

Exposure during transport and at non-residential locations is ignored in most epidemiological studies of traffic-related air pollution. We investigated the impact of separately estimating NO2 long-term outdoor exposures at home, work/school, and while commuting on the association between this marker of exposure and potential health outcomes. We used spatially and temporally resolved commuter route data and model-based NO2 estimates of a population sample in Basel, Switzerland, to assign individual NO2-exposure estimates of increasing complexity, namely (1) home outdoor concentration; (2) time-weighted home and work/school concentrations; and (3) time-weighted concentration incorporating home, work/school and commute. On the basis of their covariance structure, we estimated the expectable relative differences in the regression slopes between a quantitative health outcome and our measures of individual NO2 exposure using a standard measurement error model. The traditional use of home outdoor NO2 alone indicated a 12% (95% CI: 11-14%) underestimation of related health effects as compared with integrating both home and work/school outdoor concentrations. Mean contribution of commuting to total weekly exposure was small (3.2%; range 0.1-13.5%). Thus, ignoring commute in the total population may not significantly underestimate health effects as compared with the model combining home and work/school. For individuals commuting between Basel-City and Basel-Country, ignoring commute may produce, however, a significant attenuation bias of 4% (95% CI: 4-5%). Our results illustrate the importance of including work/school locations in assessments of long-term exposures to traffic-related air pollutants such as NO2. Information on individuals' commuting behavior may further improve exposure estimates, especially for subjects having lengthy commutes along major transportation routes.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Epidemiologic Methods , Nitrogen Dioxide/analysis , Risk Assessment/methods , Adolescent , Adult , Bicycling , Environmental Exposure/analysis , Female , Humans , Longitudinal Studies , Lung Diseases/chemically induced , Lung Diseases/epidemiology , Male , Middle Aged , Occupational Exposure/analysis , Regression Analysis , Schools , Spatio-Temporal Analysis , Switzerland/epidemiology , Time Factors , Transportation , Urban Population , Walking , Work , Young Adult
12.
Thorax ; 69(11): 1005-14, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25112730

ABSTRACT

BACKGROUND: This study aimed to assess associations of outdoor air pollution on prevalence of chronic bronchitis symptoms in adults in five cohort studies (Asthma-E3N, ECRHS, NSHD, SALIA, SAPALDIA) participating in the European Study of Cohorts for Air Pollution Effects (ESCAPE) project. METHODS: Annual average particulate matter (PM(10), PM(2.5), PM(absorbance), PM(coarse)), NO(2), nitrogen oxides (NO(x)) and road traffic measures modelled from ESCAPE measurement campaigns 2008-2011 were assigned to home address at most recent assessments (1998-2011). Symptoms examined were chronic bronchitis (cough and phlegm for ≥3 months of the year for ≥2 years), chronic cough (with/without phlegm) and chronic phlegm (with/without cough). Cohort-specific cross-sectional multivariable logistic regression analyses were conducted using common confounder sets (age, sex, smoking, interview season, education), followed by meta-analysis. RESULTS: 15 279 and 10 537 participants respectively were included in the main NO(2) and PM analyses at assessments in 1998-2011. Overall, there were no statistically significant associations with any air pollutant or traffic exposure. Sensitivity analyses including in asthmatics only, females only or using back-extrapolated NO(2) and PM10 for assessments in 1985-2002 (ECRHS, NSHD, SALIA, SAPALDIA) did not alter conclusions. In never-smokers, all associations were positive, but reached statistical significance only for chronic phlegm with PM(coarse) OR 1.31 (1.05 to 1.64) per 5 µg/m(3) increase and PM(10) with similar effect size. Sensitivity analyses of older cohorts showed increased risk of chronic cough with PM(2.5abs) (black carbon) exposures. CONCLUSIONS: Results do not show consistent associations between chronic bronchitis symptoms and current traffic-related air pollution in adult European populations.


Subject(s)
Bronchitis, Chronic , Air Pollution/adverse effects , Bronchitis, Chronic/epidemiology , Bronchitis, Chronic/etiology , Bronchitis, Chronic/prevention & control , Cohort Studies , Cross-Sectional Studies , Environmental Monitoring , Global Health , Humans , Incidence , Risk Factors
13.
Int J Environ Res Public Health ; 11(5): 5049-68, 2014 May 12.
Article in English | MEDLINE | ID: mdl-24823664

ABSTRACT

We simulated commuter routes and long-term exposure to traffic-related air pollution during commute in a representative population sample in Basel (Switzerland), and evaluated three air pollution models with different spatial resolution for estimating commute exposures to nitrogen dioxide (NO2) as a marker of long-term exposure to traffic-related air pollution. Our approach includes spatially and temporally resolved data on actual commuter routes, travel modes and three air pollution models. Annual mean NO2 commuter exposures were similar between models. However, we found more within-city and within-subject variability in annual mean (±SD) NO2 commuter exposure with a high resolution dispersion model (40 ± 7 µg m(-3), range: 21-61) than with a dispersion model with a lower resolution (39 ± 5 µg m(-3); range: 24-51), and a land use regression model (41 ± 5 µg m(-3); range: 24-54). Highest median cumulative exposures were calculated along motorized transport and bicycle routes, and the lowest for walking. For estimating commuter exposure within a city and being interested also in small-scale variability between roads, a model with a high resolution is recommended. For larger scale epidemiological health assessment studies, models with a coarser spatial resolution are likely sufficient, especially when study areas include suburban and rural areas.


Subject(s)
Air Pollutants/analysis , Environmental Exposure , Environmental Monitoring/methods , Models, Theoretical , Nitrogen Dioxide/analysis , Transportation , Adolescent , Adult , Computer Simulation , Female , Humans , Male , Middle Aged , Switzerland , Young Adult
14.
Environ Sci Pollut Res Int ; 20(9): 6496-508, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23608980

ABSTRACT

Although trans-Alpine highway traffic exhaust is one of the major sources of air pollution along the highway valleys of the Alpine regions, little is known about its contribution to residential exposure and impact on respiratory health. In this paper, source-specific contributions to particulate matter with an aerodynamic diameter < 10 µm (PM10) and their spatio-temporal distribution were determined for later use in a pediatric asthma panel study in an Alpine village. PM10 sources were identified by positive matrix factorization using chemical trace elements, elemental, and organic carbon from daily PM10 filters collected between November 2007 and June 2009 at seven locations within the village. Of the nine sources identified, four were directly road traffic-related: traffic exhaust, road dust, tire and brake wear, and road salt contributing 16 %, 8 %, 1 %, and 2 % to annual PM10 concentrations, respectively. They showed a clear dependence with distance to highway. Additional contributions were identified from secondary particles (27 %), biomass burning (18 %), railway (11 %), and mineral dust including a local construction site (13 %). Comparing these source contributions with known source-specific biomarkers (e.g., levoglucosan, nitro-polycyclic aromatic hydrocarbons) showed high agreement with biomass burning, moderate with secondary particles (in winter), and lowest agreement with traffic exhaust.


Subject(s)
Air Pollutants/chemistry , Particle Size , Particulate Matter , Vehicle Emissions , Fires , Switzerland
15.
Sci Total Environ ; 456-457: 50-60, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23584033

ABSTRACT

Traffic-related air pollutants show high spatial variability near roads, posing a challenge to adequately assess exposures. Recent modeling approaches (e.g. dispersion models, land-use regression (LUR) models) have addressed this but mostly in urban areas where traffic is abundant. In contrast, our study area was located in a rural Swiss Alpine valley crossed by the main North-south transit highway of Switzerland. We conducted an extensive measurement campaign collecting continuous nitrogen dioxide (NO2), particulate number concentrations (PN), daily respirable particulate matter (PM10), elemental carbon (EC) and organic carbon (OC) at one background, one highway and seven mobile stations from November 2007 to June 2009. Using these measurements, we built a hybrid model to predict daily outdoor NO2 concentrations at residences of children participating in an asthma panel study. With the exception of OC, daily variations of the pollutants followed the temporal trends of heavy-duty traffic counts on the highway. In contrast, variations of weekly/seasonal means were strongly determined by meteorological conditions, e.g., winter inversion episodes. For pollutants related to primary exhaust emissions (i.e. NO2, EC and PN) local spatial variation strongly depended on proximity to the highway. Pollutant concentrations decayed to background levels within 150 to 200 m from the highway. Two separate daily NO2 prediction models were built using LUR approaches with (a) short-term traffic and weather data (model 1) and (b) subsequent addition of daily background NO2 to previous model (model 2). Models 1 and 2 explained 70% and 91% of the variability in outdoor NO2 concentrations, respectively. The biweekly averaged predictions from the final model 2 agreed very well with the independent biweekly integrated passive measurements taken at thirteen homes and nine community sites (validation R(2)=0.74). The excellent spatio-temporal performance of our model provides a very promising basis for the health effect assessment of the panel study.


Subject(s)
Air Movements , Air Pollutants/analysis , Particulate Matter/analysis , Transportation , Vehicle Emissions/analysis , Environmental Monitoring , Models, Theoretical , Rural Health , Rural Population , Switzerland , Weather
16.
Air Qual Atmos Health ; 5(3): 335-351, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22942922

ABSTRACT

Recent studies have linked acute respiratory and cardiovascular outcomes to measurements or estimates of traffic-related air pollutants at homes or schools. However, few studies have evaluated these outdoor measurements and estimates against personal exposure measurements. We compared measured and modeled home outdoor concentrations with personal measurements of traffic-related air pollutants in the Los Angeles air basin (Whittier and Riverside). Personal exposure of 63 children with asthma and 15 homes were assessed for particulate matter with an aerodynamic diameter less than 2.5 µm (PM(2.5)), elemental carbon (EC), and organic carbon (OC) during sixteen 10-day monitoring runs. Regression models to predict daily home outdoor PM(2.5), EC, and OC were constructed using home outdoor measurements, geographical and meteorological parameters, as well as CALINE4 estimates at outdoor home sites, which represent the concentrations from local traffic sources. These home outdoor models showed the variance explained (R(2)) was 0.97 and 0.94 for PM(2.5), 0.91 and 0.83 for OC, and 0.76 and 0.87 for EC in Riverside and Whittier, respectively. The PM(2.5) outdoor estimates correlated well with the personal measurements (Riverside R(2) = 0.65 and Whittier R(2) = 0.69). However, excluding potentially inaccurate samples from Riverside, the correlation between personal exposure to carbonaceous species and home outdoor estimates in Whittier was moderate for EC (R(2) = 0.37) and poor for OC (R(2) = 0.08). The CALINE4 estimates alone were not correlated with personal measurements of EC or other pollutants. While home outdoor estimates provide good approximations for daily personal PM(2.5) exposure, they may not be adequate for estimating daily personal exposure to EC and OC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11869-010-0099-y) contains supplementary material, which is available to authorized users.

SELECTION OF CITATIONS
SEARCH DETAIL
...