Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 12(11): 6780-6795, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34858680

ABSTRACT

Achieving high resolution in optical coherence tomography typically requires the continuous extension of the spectral bandwidth of the light source. This work demonstrates an alternative approach: combining two discrete spectral windows located in the visible spectrum with a trained conditional generative adversarial network (cGAN) to reconstruct a high-resolution image equivalent to that generated using a continuous spectral band. The cGAN was trained using OCT image pairs acquired with the continuous and discontinuous visible range spectra to learn the relation between low- and high-resolution data. The reconstruction performance was tested using 6000 B-scans of a layered phantom, micro-beads and ex-vivo mouse ear tissue. The resultant cGAN-generated images demonstrate an image quality and axial resolution which approaches that of the high-resolution system.

2.
Sci Rep ; 11(1): 21052, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702941

ABSTRACT

Photonic integrated circuits (PIC) provide promising functionalities to significantly reduce the size and costs of optical coherence tomography (OCT) systems. This paper presents an imaging platform operating at a center wavelength of 830 nm for ophthalmic application using PIC-based swept source OCT. An on-chip Mach-Zehnder interferometer (MZI) configuration, which comprises an input power splitter, polarization beam splitters in the sample and the reference arm, and a 50/50 coupler for signal interference represents the core element of the system with a footprint of only [Formula: see text]. The system achieves 94 dB imaging sensitivity with 750 [Formula: see text]W on the sample, 50 kHz imaging speed and 5.5 [Formula: see text]m axial resolution (in soft tissue). With this setup, in vivo human retinal imaging of healthy subjects was performed producing B-scans, three-dimensional renderings as well as OCT angiography. These promising results are significant prerequisites for further integration of optical and electronic building blocks on a single swept source-OCT PIC.


Subject(s)
Angiography/instrumentation , Equipment Design , Retina/diagnostic imaging , Tomography, Optical Coherence/instrumentation , Angiography/methods , Humans , Tomography, Optical Coherence/methods
3.
Biomed Opt Express ; 11(6): 3395-3406, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32637262

ABSTRACT

We analyze the influence of intrinsic polarization alignment on image quality and axial resolution employing a broadband 840 nm light source with an optical bandwidth of 160 nm and an output power of 12 mW tailored for spectral-domain optical coherence microscopy (SD-OCM) applications. Three superluminescent diodes (SLEDs) are integrated into a 14-pin butterfly module using a free-space micro-optical bench architecture, maintaining a constant polarization state across the full spectral output. We demonstrate superior imaging performance in comparison to traditionally coupled-SLED broadband light sources in a teleost model organism in-vivo.

4.
Appl Opt ; 48(25): F82-9, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19724319

ABSTRACT

A numerical investigation of the performance of an automatic gain-controlled semiconductor optical preamplified receiver for a 4 x 25 Gbits/s wavelength division multiplexing transmission system with a 0-40 km reach is presented. We show that the control scheme acting on the semiconductor optical amplifier (SOA) gain increases the input power dynamic range of the optical receiver, thus allowing the transmission system to operate error free regardless of fiber length. In contrast, a fixed-gain optical receiver shows poor performance that is due to SOA nonlinearity and photodiode overload, which are well captured by the corresponding simulation models. The device represents a practical alternative to the next-generation high-speed Ethernet technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...