Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 56(20): 14272-14283, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36191257

ABSTRACT

As the climate warms, wildfire activity is increasing, posing a risk to human health. Studies have reported on particulate matter (PM) in wildfire smoke, yet the chemicals associated with PM have received considerably less attention. Here, we analyzed 13 years (2006-2018) of PM2.5 chemical composition data from monitors in California on smoke-impacted days. Select chemicals (e.g., aluminum and sulfate) were statistically elevated on smoke-impacted days in over half of the years studied. Other chemicals, mostly trace metals harmful to human health (e.g., copper and lead), were elevated during particular fires only. For instance, in 2018, lead was more than 40 times higher on smoke days on average at the Point Reyes monitoring station, due mostly to the Camp Fire, burning approximately 200 km away. There was an association between these metals and the combustion of anthropogenic material (e.g., the burning of houses and vehicles). Although still currently rare, these infrastructure fires are likely becoming more common and can mobilize trace metals in smoke far downwind, at levels generally unseen except in the most polluted areas of the country. We hope a better understanding of the chemicals in wildfire smoke will assist in the communication and reduction of public health risks.


Subject(s)
Air Pollutants , Environmental Pollutants , Fires , Air Pollutants/analysis , Aluminum , California , Copper , Environmental Exposure , Humans , Particulate Matter/analysis , Smoke/analysis , Sulfates
2.
Toxicol Appl Pharmacol ; 450: 116160, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35817128

ABSTRACT

Epidemiological studies associate biomass smoke with an increased risk for respiratory infections in children and adults in the developing world, with 500,000 premature deaths each year attributed to biomass smoke-related acute respiratory infections including infections caused by respiratory viruses. Animal dung is a biomass fuel of particular concern because it generates more toxic compounds per amount burned than wood, and is a fuel of last resort for the poorest households. Currently, there is little biological evidence on the effects of dung biomass smoke exposure on immune responses to respiratory viral infections. Here, we investigated the impact of dung biomass exposure on respiratory infection using a mouse model of dung biomass smoke and cultured primary human small airway epithelial cells (SAECs). Mice infected with influenza A virus (IAV) after dung biomass smoke exposure had increased mortality, lung inflammation and virus mRNA levels, and suppressed expression of innate anti-viral mediators compared to air exposed mice. Importantly, there was still significant tissue inflammation 14 days after infection in dung biomass smoke-exposed mice even after inflammation had resolved in air-exposed mice. Dung biomass smoke exposure also suppressed the production of anti-viral cytokines and interferons in cultured SAECs treated with poly(I:C) or IAV. This study shows that dung biomass smoke exposure impairs the immune response to respiratory viruses and contributes to biomass smoke-related susceptibility to respiratory viral infections, likely due to a failure to resolve the inflammatory effects of biomass smoke exposure.


Subject(s)
Influenza, Human , Pneumonia , Respiratory Tract Infections , Animals , Biomass , Child , Humans , Inflammation/chemically induced , Inflammation/metabolism
3.
Am J Respir Cell Mol Biol ; 64(1): 126-137, 2021 01.
Article in English | MEDLINE | ID: mdl-33095645

ABSTRACT

Inhalation of tobacco smoke has been linked to increased risk of viral infection, such as influenza. Inhalation of electronic-cigarette (e-cigarette) aerosol has also recently been linked to immune suppression within the respiratory tract, specifically the nasal mucosa. We propose that changes in the nasal mucosal immune response modify antiviral host-defense responses in e-cigarette users. Nonsmokers, cigarette smokers, and e-cigarette users were inoculated with live-attenuated influenza virus (LAIV) to safely examine the innate immune response to influenza infection. Before and after LAIV inoculation, we collected nasal epithelial-lining fluid, nasal lavage fluid, nasal-scrape biopsy specimens, urine, and blood. Endpoints examined include cytokines and chemokines, influenza-specific IgA, immune-gene expression, and markers of viral load. Statistical analysis included primary comparisons of cigarette and e-cigarette groups with nonsmokers, as well as secondary analysis of demographic factors as potential modifiers. Markers of viral load did not differ among the three groups. Nasal-lavage-fluid anti-LAIV IgA levels increased in nonsmokers after LAIV inoculation but did not increase in e-cigarette users and cigarette smokers. LAIV-induced gene-expression changes in nasal biopsy specimens differed in cigarette smokers and e-cigarette users as compared with nonsmokers, with a greater number of genes changed in e-cigarette users, mostly resulting in decreased expression. The top downregulated genes in cigarette smokers were SMPD3, NOS2A, and KLRB1, and the top downregulated genes in e-cigarette users were MR1, NT5E, and HRAS. Similarly, LAIV-induced cytokine levels in nasal epithelial-lining fluid differed among the three groups, including decreased antiviral host-defense mediators (IFNγ, IL6, and IL12p40). We also detected that sex interacted with tobacco-product exposure to modify LAIV-induced immune-gene expression. Our results demonstrate that e-cigarette use altered nasal LAIV-induced immune responses, including gene expression, cytokine and chemokine release, and LAIV-specific IgA levels. Together, these data suggest that e-cigarette use induces changes in the nasal mucosa that are consistent with the potential for altered respiratory antiviral host-defense function.Clinical trial registered with www.clinicaltrials.gov (NCT02019745).


Subject(s)
Immunity, Mucosal/drug effects , Influenza Vaccines/immunology , Nasal Mucosa/drug effects , Tobacco Products/adverse effects , Vaccines, Attenuated/immunology , Vaping/adverse effects , Vaping/immunology , Adult , Cytokines/immunology , Female , Humans , Immunity, Innate/drug effects , Immunity, Innate/immunology , Immunity, Mucosal/immunology , Inflammation/immunology , Inflammation/virology , Influenza, Human/immunology , Influenza, Human/virology , Male , Nasal Lavage Fluid/immunology , Nasal Lavage Fluid/virology , Nasal Mucosa/immunology , Smoke/adverse effects , Young Adult
4.
J Biol Chem ; 295(36): 12727-12738, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32690608

ABSTRACT

Inhalation of the ambient air pollutant ozone causes lung inflammation and can suppress host defense mechanisms, including impairing macrophage phagocytosis. Ozone reacts with cholesterol in the lung to form oxysterols, like secosterol A and secosterol B (SecoA and SecoB), which can form covalent adducts on cellular proteins. How oxysterol-protein adduction modifies the function of lung macrophages is unknown. Herein, we used a proteomic screen to identify lung macrophage proteins that form adducts with ozone-derived oxysterols. Functional ontology analysis of the adductome indicated that protein binding was a major function of adducted proteins. Further analysis of specific proteins forming adducts with SecoA identified the phagocytic receptors CD206 and CD64. Adduction of these receptors with ozone-derived oxysterols impaired ligand binding and corresponded with reduced macrophage phagocytosis. This work suggests a novel mechanism for the suppression of macrophage phagocytosis following ozone exposure through the generation of oxysterols and the formation of oxysterol-protein adducts on phagocytic receptors.


Subject(s)
Lung/metabolism , Macrophages/metabolism , Membrane Glycoproteins/metabolism , Oxysterols/metabolism , Ozone/metabolism , Phagocytosis , Receptors, IgG/metabolism , Receptors, Immunologic/metabolism , Cholesterol/analogs & derivatives , Cholesterol/metabolism , Humans , Lung/cytology , Macrophages/cytology , THP-1 Cells
5.
PLoS One ; 15(5): e0232102, 2020.
Article in English | MEDLINE | ID: mdl-32437367

ABSTRACT

Cigarette smoke exposure is a risk factor for many pulmonary diseases, including Chronic Obstructive Pulmonary Disease (COPD). Cigarette smokers are more prone to respiratory infections with more severe symptoms. In those with COPD, viral infections can lead to acute exacerbations resulting in lung function decline and death. Epithelial cells in the lung are the first line of defense against inhaled insults such as tobacco smoke and are the target for many respiratory pathogens. Endocytosis is an essential cell function involved in nutrient uptake, cell signaling, and sensing of the extracellular environment, yet, the effect of cigarette smoke on epithelial cell endocytosis is not known. Here, we report for the first time that cigarette smoke alters the function of several important endocytic pathways in primary human small airway epithelial cells. Cigarette smoke exposure impairs clathrin-mediated endocytosis and fluid phase macropinocytosis while increasing caveolin mediated endocytosis. We also show that influenza virus uptake is enhanced by cigarette smoke exposure. These results support the concept that cigarette smoke-induced dysregulation of endocytosis contributes to lung infection in smokers. Targeting endocytosis pathways to restore normal epithelial cell function may be a new therapeutic approach to reduce respiratory infections in current and former smokers.


Subject(s)
Caveolins/metabolism , Epithelial Cells/drug effects , Infections/pathology , Lung/cytology , Nicotiana/chemistry , Smoke/adverse effects , Up-Regulation/drug effects , Disease Susceptibility , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Infections/chemically induced , Infections/virology , Nicotiana/adverse effects
6.
J Clin Invest ; 128(7): 2724-2731, 2018 07 02.
Article in English | MEDLINE | ID: mdl-30108196

ABSTRACT

Chronic inflammation is an underlying feature of many diseases, including chronic obstructive pulmonary disease, rheumatoid arthritis, asthma, and multiple sclerosis. There is an increasing appreciation of the dysregulation of adaptive immunity in chronic inflammatory and allergic diseases. The discovery of specialized pro-resolving lipid mediators (SPMs) that actively promote the resolution of inflammation has opened new avenues for the treatment of chronic inflammatory diseases. Much work has been done focusing on the impact of SPMs on innate immune cells. However, much less is known about the influence of SPMs on the development of antigen-specific adaptive immune responses. This Review highlights the important breakthroughs concerning the effects of SPMs on the key cell types involved in the development of adaptive immunity, namely dendritic cells, T cells, and B cells.


Subject(s)
Adaptive Immunity/physiology , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Lipid Metabolism/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cytokines/biosynthesis , Dendritic Cells/immunology , Dendritic Cells/metabolism , Fatty Acids, Unsaturated/immunology , Fatty Acids, Unsaturated/metabolism , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/metabolism , Models, Immunological , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
7.
Am J Physiol Lung Cell Mol Physiol ; 314(3): L505-L513, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29351447

ABSTRACT

Cigarette smokers and people exposed to second-hand smoke are at an increased risk for pulmonary viral infections, and yet the mechanism responsible for this heightened susceptibility is not understood. To understand the effect of cigarette smoke on susceptibility to viral infection, we used an air-liquid interface culture system and exposed primary human small airway epithelial cells (SAEC) to whole cigarette smoke, followed by treatment with the viral mimetic polyinosinic polycytidylic acid (poly I:C) or influenza A virus (IAV). We found that prior smoke exposure strongly inhibited production of proinflammatory (interleukin-6 and interleukin-8) and antiviral [interferon-γ-induced protein 10 (IP-10) and interferons] mediators in SAECs in response to poly I:C and IAV infection. Impaired antiviral responses corresponded to increased infection with IAV. This was associated with a decrease in phosphorylation of the key antiviral transcription factor interferon response factor 3 (IRF3). Here, we found that cigarette smoke exposure inhibited activation of Toll-like receptor 3 (TLR3) by impairing TLR3 cleavage, which was required for downstream phosphorylation of IRF3 and production of IP-10. These results identify a novel mechanism by which cigarette smoke exposure impairs antiviral responses in lung epithelial cells, which may contribute to increased susceptibility to respiratory infections.


Subject(s)
Antiviral Agents/metabolism , Epithelial Cells/immunology , Influenza, Human/complications , Interferon-beta/metabolism , Respiratory System/immunology , Smoking/adverse effects , Toll-Like Receptor 3/metabolism , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Influenza A virus/isolation & purification , Influenza, Human/metabolism , Influenza, Human/virology , Poly I-C/administration & dosage , Respiratory System/drug effects , Respiratory System/metabolism , Respiratory System/virology , Signal Transduction
8.
Toxicol In Vitro ; 43: 76-86, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28572013

ABSTRACT

Worldwide, over 4 million premature deaths each year are attributed to the burning of biomass fuels for cooking and heating. Epidemiological studies associate household air pollution with lung diseases, including chronic obstructive pulmonary disease, lung cancer, and respiratory infections. Animal dung, a biomass fuel used by economically vulnerable populations, generates more toxic compounds per mass burned than other biomass fuels. The type of animal dung used varies widely depending on local agro-geography. There are currently neither standardized experimental systems for dung biomass smoke research nor studies assessing the health impacts of different types of dung smoke. Here, we used a novel reproducible exposure system to assess outcomes related to inflammation and respiratory infections in human airway cells exposed to six different types of dung biomass smoke. We report that dung biomass smoke, regardless of species, is pro-inflammatory and activates the aryl hydrocarbon receptor and JNK transcription factors; however, dung smoke also suppresses interferon responses after a challenge with a viral mimetic. These effects are consistent with epidemiological data, and suggest a mechanism by which the combustion of animal dung can directly cause lung diseases, promote increased susceptibility to infection, and contribute to the global health problem of household air pollution.


Subject(s)
Manure , Smoke/adverse effects , Animals , Biomass , Cell Line , Cells, Cultured , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , MAP Kinase Kinase 4/metabolism , Poly I-C/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Transcription Factor AP-1/metabolism , Transcription Factor RelA/metabolism
9.
Am J Physiol Lung Cell Mol Physiol ; 311(6): L1222-L1233, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27836898

ABSTRACT

Animal dung is a biomass fuel burned by vulnerable populations who cannot afford cleaner sources of energy, such as wood and gas, for cooking and heating their homes. Exposure to biomass smoke is the leading environmental risk for mortality, with over 4,000,000 deaths each year worldwide attributed to indoor air pollution from biomass smoke. Biomass smoke inhalation is epidemiologically associated with pulmonary diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, and respiratory infections, especially in low and middle-income countries. Yet, few studies have examined the mechanisms of dung biomass smoke-induced inflammatory responses in human lung cells. Here, we tested the hypothesis that dung biomass smoke causes inflammatory responses in human lung cells through signaling pathways involved in acute and chronic lung inflammation. Primary human small airway epithelial cells (SAECs) were exposed to dung smoke at the air-liquid interface using a newly developed, automated, and reproducible dung biomass smoke generation system. The examination of inflammatory signaling showed that dung biomass smoke increased the production of several proinflammatory cytokines and enzymes in SAECs through activation of the activator protein (AP)-1 and arylhydrocarbon receptor (AhR) but not nuclear factor-κB (NF-κB) pathways. We propose that the inflammatory responses of lung cells exposed to dung biomass smoke contribute to the development of respiratory diseases.


Subject(s)
Biomass , Epithelial Cells/metabolism , Epithelial Cells/pathology , Inflammation/metabolism , Inflammation/pathology , Lung/pathology , Signal Transduction , Smoke/adverse effects , Animals , Azo Compounds/pharmacology , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Epithelial Cells/drug effects , Horses , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Particulate Matter/analysis , Pyrazoles/pharmacology , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction/drug effects , Transcription Factor AP-1/metabolism
10.
PPAR Res ; 2015: 549691, 2015.
Article in English | MEDLINE | ID: mdl-26713087

ABSTRACT

The resolution of inflammation is an active and dynamic process, mediated in large part by the innate immune system. Resolution represents not only an increase in anti-inflammatory actions, but also a paradigm shift in immune cell function to restore homeostasis. PPARγ, a ligand activated transcription factor, has long been studied for its anti-inflammatory actions, but an emerging body of literature is investigating the role of PPARγ and its ligands (including thiazolidinediones, prostaglandins, and oleanolic acids) in all phases of resolution. PPARγ can shift production from pro- to anti-inflammatory mediators by neutrophils, platelets, and macrophages. PPARγ and its ligands further modulate platelet and neutrophil function, decreasing trafficking, promoting neutrophil apoptosis, and preventing platelet-leukocyte interactions. PPARγ alters macrophage trafficking, increases efferocytosis and phagocytosis, and promotes alternative M2 macrophage activation. There are also roles for this receptor in the adaptive immune response, particularly regarding B cells. These effects contribute towards the attenuation of multiple disease states, including COPD, colitis, Alzheimer's disease, and obesity in animal models. Finally, novel specialized proresolving mediators-eicosanoids with critical roles in resolution-may act through PPARγ modulation to promote resolution, providing another exciting area of therapeutic potential for this receptor.

SELECTION OF CITATIONS
SEARCH DETAIL
...