Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 98(5): e0169323, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38563763

ABSTRACT

In the early COVID-19 pandemic with urgent need for countermeasures, we aimed at developing a replicating viral vaccine using the highly efficacious measles vaccine as vector, a promising technology with prior clinical proof of concept. Building on our successful pre-clinical development of a measles virus (MV)-based vaccine candidate against the related SARS-CoV, we evaluated several recombinant MV expressing codon-optimized SARS-CoV-2 spike glycoprotein. Candidate V591 expressing a prefusion-stabilized spike through introduction of two proline residues in HR1 hinge loop, together with deleted S1/S2 furin cleavage site and additional inactivation of the endoplasmic reticulum retrieval signal, was the most potent in eliciting neutralizing antibodies in mice. After single immunization, V591 induced similar neutralization titers as observed in sera of convalescent patients. The cellular immune response was confirmed to be Th1 skewed. V591 conferred long-lasting protection against SARS-CoV-2 challenge in a murine model with marked decrease in viral RNA load, absence of detectable infectious virus loads, and reduced lesions in the lungs. V591 was furthermore efficacious in an established non-human primate model of disease (see companion article [S. Nambulli, N. Escriou, L. J. Rennick, M. J. Demers, N. L. Tilston-Lunel et al., J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23]). Thus, V591 was taken forward into phase I/II clinical trials in August 2020. Unexpected low immunogenicity in humans (O. Launay, C. Artaud, M. Lachâtre, M. Ait-Ahmed, J. Klein et al., eBioMedicine 75:103810, 2022, https://doi.org/10.1016/j.ebiom.2021.103810) revealed that the underlying mechanisms for resistance or sensitivity to pre-existing anti-measles immunity are not yet understood. Different hypotheses are discussed here, which will be important to investigate for further development of the measles-vectored vaccine platform.IMPORTANCESARS-CoV-2 emerged at the end of 2019 and rapidly spread worldwide causing the COVID-19 pandemic that urgently called for vaccines. We developed a vaccine candidate using the highly efficacious measles vaccine as vector, a technology which has proved highly promising in clinical trials for other pathogens. We report here and in the companion article by Nambulli et al. (J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23) the design, selection, and preclinical efficacy of the V591 vaccine candidate that was moved into clinical development in August 2020, 7 months after the identification of SARS-CoV-2 in Wuhan. These unique in-human trials of a measles vector-based COVID-19 vaccine revealed insufficient immunogenicity, which may be the consequence of previous exposure to the pediatric measles vaccine. The three studies together in mice, primates, and humans provide a unique insight into the measles-vectored vaccine platform, raising potential limitations of surrogate preclinical models and calling for further refinement of the platform.


Subject(s)
COVID-19 Vaccines , Measles virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Female , Humans , Mice , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Disease Models, Animal , Genetic Vectors , Measles Vaccine/immunology , Measles Vaccine/genetics , Measles virus/immunology , Measles virus/genetics , Mice, Inbred BALB C , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics
2.
Eur J Immunol ; 51(1): 180-190, 2021 01.
Article in English | MEDLINE | ID: mdl-33259646

ABSTRACT

Although the COVID-19 pandemic peaked in March/April 2020 in France, the prevalence of infection is barely known. Using high-throughput methods, we assessed herein the serological response against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of 1847 participants working in three sites of an institution in Paris conurbation. In May-July 2020, 11% (95% confidence interval [CI]: 9.7-12.6) of serums were positive for IgG against the SARS-CoV-2 N and S proteins, and 9.5% (95% CI: 8.2-11.0) were neutralizer in pseudo-typed virus assays. The prevalence of seroconversion was 11.6% (95% CI: 10.2-13.2) when considering positivity in at least one assay. In 5% of RT-qPCR positive individuals, no systemic IgGs were detected. Among immune individuals, 21% had been asymptomatic. Anosmia (loss of smell) and ageusia (loss of taste) occurred in 52% of the IgG-positive individuals and in 3% of the negative ones. In contrast, 30% of the anosmia-ageusia cases were seronegative, suggesting that the true prevalence of infection may have reached 16.6%. In sera obtained 4-8 weeks after the first sampling, anti-N and anti-S IgG titers and neutralization activity in pseudo-virus assay declined by 31%, 17%, and 53%, resulting thus in half-life of 35, 87, and 28 days, respectively. The population studied is representative of active workers in Paris. The short lifespan of the serological systemic responses suggests an underestimation of the true prevalence of infection.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , COVID-19/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Pandemics , Paris/epidemiology , Seroepidemiologic Studies , Time Factors
3.
mSphere ; 4(6)2019 11 06.
Article in English | MEDLINE | ID: mdl-31694898

ABSTRACT

Jingmenvirus is a recently identified group of segmented RNA viruses phylogenetically linked with unsegmented Flaviviridae viruses. Primarily identified in various tick genera originating in China, Jingmenvirus geographical distribution has rapidly expanded to cover Africa, South America, Caribbean, and Europe. The identification of Jingmen-related viruses in various mammals, including febrile humans, opens the possibility that Jingmenviruses may be novel tick-borne arboviruses. In this study, we aimed at increasing knowledge of the host range, genetic diversity, and geographical distribution of Jingmenviruses by reporting for the first time the identification of Jingmenviruses associated with Rhipicephalus microplus ticks originating in the French Antilles (Guadeloupe and Martinique islands), with Amblyomma testudinarium ticks in Lao PDR, and with Ixodes ricinus ticks in metropolitan France, and from urine of Pteropus lylei bats in Cambodia. Analyses of the relationships between the different Jingmenvirus genomes resulted in the identification of three main phylogenic subclades, each of them containing both tick-borne and mammal-borne strains, reinforcing the idea that Jingmenviruses may be considered as tick-borne arboviruses. Finally, we estimated the prevalence of Jingmenvirus-like infection using luciferase immunoprecipitation assay screening (LIPS) of asymptomatic humans and cattle highly exposed to tick bites. Among 70 French human, 153 Laotian human, and 200 Caribbean cattle sera tested, only one French human serum was found (slightly) positive, suggesting that the prevalence of Jingmenvirus human and cattle infections in these areas is probably low.IMPORTANCE Several arboviruses emerging as new pathogens for humans and domestic animals have recently raised public health concern and increased interest in the study of their host range and in detection of spillover events. Recently, a new group of segmented Flaviviridae-related viruses, the Jingmenviruses, has been identified worldwide in many invertebrate and vertebrate hosts, pointing out the issue of whether they belong to the arbovirus group. The study presented here combined whole-genome sequencing of three tick-borne Jingmenviruses and one bat-borne Jingmenvirus with comprehensive phylogenetic analyses and high-throughput serological screening of human and cattle populations exposed to these viruses to contribute to the knowledge of Jingmenvirus host range, geographical distribution, and mammalian exposure.


Subject(s)
Flaviviridae/classification , Flaviviridae/isolation & purification , Genetic Variation , Host Specificity , Phylogeography , Animals , Cattle , Chiroptera , Filoviridae Infections/veterinary , Filoviridae Infections/virology , Flaviviridae/genetics , Flaviviridae/growth & development , Global Health , Humans , Ticks
4.
Front Microbiol ; 10: 2315, 2019.
Article in English | MEDLINE | ID: mdl-31681195

ABSTRACT

Emerging zoonoses caused by previously unknown agents are one of the most important challenges for human health because of their inherent inability to be predictable, conversely to emergences caused by previously known agents that could be targeted by routine surveillance programs. Emerging zoonotic infections either originate from increasing contacts between wildlife and human populations, or from the geographical expansion of hematophagous arthropods that act as vectors, this latter being more capable to impact large-scale human populations. While characterizing the viral communities from candidate vectors in high-risk geographical areas is a necessary initial step, the need to identify which viruses are able to spill over and those restricted to their hosts has recently emerged. We hypothesized that currently unknown tick-borne arboviruses could silently circulate in specific biotopes where mammals are highly exposed to tick bites, and implemented a strategy that combined high-throughput sequencing with broad-range serological techniques to both identify novel arboviruses and tick-specific viruses in a ticks/mammals interface in Thailand. The virome of Thai ticks belonging to the Rhipicephalus, Amblyomma, Dermacentor, Hyalomma, and Haemaphysalis genera identified numerous viruses, among which several viruses could be candidates for future emergence as regards to their phylogenetic relatedness with known tick-borne arboviruses. Luciferase immunoprecipitation system targeting external viral proteins of viruses identified among the Orthomyxoviridae, Phenuiviridae, Flaviviridae, Rhabdoviridae, and Chuviridae families was used to screen human and cattle Thai populations highly exposed to tick bites. Although no positive serum was detected for any of the six viruses selected, suggesting that these viruses are not infecting these vertebrates, or at very low prevalence (upper estimate 0.017% and 0.047% in humans and cattle, respectively), the virome of Thai ticks presents an extremely rich viral diversity, among which novel tick-borne arboviruses are probably hidden and could pose a public health concern if they emerge. The strategy developed in this pilot study, starting from the inventory of viral communities of hematophagous arthropods to end by the identification of viruses able (or likely unable) to infect vertebrates, is the first step in the prediction of putative new emergences and could easily be transposed to other reservoirs/vectors/susceptible hosts interfaces.

5.
Clin Oral Investig ; 21(7): 2157-2164, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27834029

ABSTRACT

OBJECTIVES: Idiopathic Burning mouth syndrome (iBMS) is a poorly understood affection characterized by persistent pain in the oral cavity without any clinical or biological abnormality. Opiorphin is a natural inhibitor of enkephalin-inactivating ectopeptidases, mainly produced by salivary glands, that has demonstrated analgesic properties. The objective of the present case-control study was to test the hypothesis of a decrease in opiorphin levels in iBMS patients. MATERIALS AND METHODS: Twenty-one iBMS patients and 21 matched controls subjects were included between 2011 and 2013. Submandibular and sublingual salivary, blood, and urinary opiorphin levels of iBMS patients were compared to controls. RESULTS: Results are expressed as mean values ± SD and compared using the Wilcoxon Signed Rank test. Correlations were analyzed with Spearman coefficient. The level of significance was fixed at p < 0.05. Opiorphin levels in iBMS and controls were respectively (in ng/ml) in basal saliva: 37.8 ± 42.5 and 67.6 ± 188.9 (p = NS); stimulated saliva: 28.8 ± 25.3 and 31.1 ± 29.1 (p = NS); blood: 4.6 ± 5.4 and 1.9 ± 1.4 (p < 0.05); and urines: 68.5 ± 259.8 and 8.9 ± 6.2 (p = NS). CLINICAL RELEVANCE: In conclusion, the lack of significative difference in salivary opiorphin levels between iBMS and controls does not favor a direct local role for opiorphin in the etiopathogeny of iBMS. However, higher blood opiorphin levels may reflect a systemic dysregulation in iBMS. Trial registration NCT02686359 https://clinicaltrials.gov/ct2/show/NCT02686359.


Subject(s)
Burning Mouth Syndrome/metabolism , Oligopeptides/metabolism , Salivary Proteins and Peptides/metabolism , Biomarkers/metabolism , Burning Mouth Syndrome/psychology , Case-Control Studies , Chromatography, High Pressure Liquid , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Pain Measurement
6.
Proc Natl Acad Sci U S A ; 103(47): 17979-84, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17101991

ABSTRACT

Mammalian zinc ectopeptidases play important roles in turning off neural and hormonal peptide signals at the cell surface, notably those processing sensory information. We report here the discovery of a previously uncharacterized physiological inhibitor of enkephalin-inactivating zinc ectopeptidases in humans, which we have named Opiorphin. It is a QRFSR peptide that inhibits two enkephalin-catabolizing ectoenzymes, human neutral ecto-endopeptidase, hNEP (EC 3.4.24.11), and human ecto-aminopeptidase, hAP-N (EC 3.4.11.2). Opiorphin displays potent analgesic activity in chemical and mechanical pain models by activating endogenous opioid-dependent transmission. Its function is closely related to the rat sialorphin peptide, which is an inhibitor of pain perception and acts by potentiating endogenous mu- and delta-opioid receptor-dependent enkephalinergic pathways. Here we demonstrate the functional specificity in vivo of human Opiorphin. The pain-suppressive potency of Opiorphin is as effective as morphine in the behavioral rat model of acute mechanical pain, the pin-pain test. Thus, our discovery of Opiorphin is extremely exciting from a physiological point of view in the context of endogenous opioidergic pathways, notably in modulating mood-related states and pain sensation. Furthermore, because of its in vivo properties, Opiorphin may have therapeutic implications.


Subject(s)
Analgesics/metabolism , CD13 Antigens , Neprilysin , Oligopeptides/metabolism , Opioid Peptides/metabolism , Salivary Proteins and Peptides/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Amino Acid Sequence , Animals , Behavior, Animal/physiology , CD13 Antigens/antagonists & inhibitors , CD13 Antigens/genetics , CD13 Antigens/metabolism , Cell Line , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Enkephalins/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Male , Neprilysin/antagonists & inhibitors , Neprilysin/genetics , Neprilysin/metabolism , Oligopeptides/genetics , Opioid Peptides/genetics , Pain Measurement , Rats , Rats, Wistar , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saliva/chemistry , Salivary Proteins and Peptides/genetics
7.
J Exp Med ; 203(11): 2509-18, 2006 Oct 30.
Article in English | MEDLINE | ID: mdl-17043143

ABSTRACT

Adaptor proteins positively or negatively regulate the T cell receptor for antigen (TCR) signaling cascade. We report that after TCR stimulation, the inhibitory adaptor downstream of kinase (Dok)-2 and its homologue Dok-1 are involved in a multimolecular complex including the lipid phosphatase Src homology 2 domain-containing inositol polyphosphate 5'-phosphatase (SHIP)-1 and Grb-2 which interacts with the membrane signaling scaffold linker for activation of T cells (LAT). Knockdown of LAT and SHIP-1 expression indicated that SHIP-1 favored recruitment of Dok-2 to LAT. Knockdown of Dok-2 and Dok-1 revealed their negative control on Akt and, unexpectedly, on Zap-70 activation. Our findings support the view that Dok-1 and -2 are critical elements of a LAT-dependent negative feedback loop that attenuates early TCR signal. Dok-1 and -2 may therefore exert a critical role in shaping the immune response and as gatekeepers for T cell tolerance.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/physiology , GRB2 Adaptor Protein/physiology , Lymphocyte Activation , Membrane Proteins/metabolism , Phosphoproteins/physiology , Phosphoric Monoester Hydrolases/physiology , Receptor-CD3 Complex, Antigen, T-Cell/physiology , Signal Transduction/immunology , Adaptor Proteins, Signal Transducing/biosynthesis , Cell Line, Tumor , DNA-Binding Proteins/physiology , Down-Regulation/immunology , Feedback, Physiological/immunology , Humans , Inositol Polyphosphate 5-Phosphatases , Jurkat Cells , Ligands , Membrane Proteins/biosynthesis , Membrane Proteins/physiology , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Phosphorylation , RNA-Binding Proteins/physiology , Receptor-CD3 Complex, Antigen, T-Cell/metabolism , Tyrosine/metabolism
8.
J Immunol ; 169(4): 1705-12, 2002 Aug 15.
Article in English | MEDLINE | ID: mdl-12165490

ABSTRACT

TCR down-modulation following binding to MHC/peptide complexes is considered to be instrumental for T cell activation because it allows serial triggering of receptors and the desensitization of stimulated cells. We studied CD3/TCR down-modulation and zeta degradation in T cells from two ZAP-70-immunodeficient patients. We show that, at high occupancy of the TCR, down-modulation of the CD3/TCR is comparable whether T cells express or do not express ZAP-70. However, if TCR occupancy was low, we found that CD3/TCR was down-regulated to a lesser extent in ZAP-70-negative than in ZAP-70-positive T cells. We studied CD3/TCR down-modulation in P116 (a ZAP-70-negative Jurkat cell-derived clone) and in P116 transfected with genes encoding the wild-type or a kinase-dead form of ZAP-70. Down-modulation of the TCR at high occupancy did not require ZAP-70, whereas at low TCR occupancy down-modulation was markedly reduced in the absence of ZAP-70 and in cells expressing a dead kinase mutant of ZAP-70. Thus, the presence of ZAP-70 alone is not sufficient for down-modulation; the kinase activity of this molecule is also required. The degradation of zeta induced by TCR triggering is also severely impaired in T cells from ZAP-70-deficient patients, P116 cells, and P116 cells expressing a kinase-dead form of ZAP-70. This defect in TCR-induced zeta degradation is observed at low and high levels of TCR occupancy. Our results identify ZAP-70, a tyrosine kinase known to be crucial for T cell activation, as a key player in TCR down-modulation and zeta degradation.


Subject(s)
Membrane Proteins/metabolism , Protein-Tyrosine Kinases/deficiency , Protein-Tyrosine Kinases/metabolism , Receptor-CD3 Complex, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/metabolism , Down-Regulation , Humans , Immunologic Deficiency Syndromes/enzymology , Immunologic Deficiency Syndromes/immunology , In Vitro Techniques , Jurkat Cells , Kinetics , Lymphocyte Activation , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , ZAP-70 Protein-Tyrosine Kinase
9.
Eur J Immunol ; 32(2): 568-75, 2002 02.
Article in English | MEDLINE | ID: mdl-11828374

ABSTRACT

Recruitment of ZAP-70 protein tyrosine kinase to the T cell antigen receptor (TCR) is mediated by the binding of the SH2 domains of this enzyme to phosphorylated ITAM motifs in the CD3 and TCRzeta subunits. We have previously shown that the efficiency of both positive and negative thymocyte selection was decreased in knock-in mice expressing ZAP-70 mutated at Tyr315 (ZAP-70-Y315F), a residue laying in the interdomain B of this protein. Surprisingly, in these cells the amount of phosphorylated TCRzeta chain co-precipitating with ZAP-70-Y315F was significantly reduced compared to control mice. We report now that the binding affinity of ZAP-70-Y315F to phosphorylated ITAM is reduced as compared to the wild-type protein, whereas the intrinsic catalytic activity is untouched. Consequently, phosphorylated ITAM appear to be more accessible to protein tyrosine phosphatases (PTP) and can be readily dephosphorylated. We provide evidence suggesting that the defective ITAM binding induced by Tyr315 mutation is independent of the putative role of this residue as a binding site for Vav-1. Finally, we found that the extracellular signal-regulated kinase pathway is impaired in ZAP-70-Y315F-expressing mice. Collectively, these results demonstrate that Tyr315 has an unsuspected structural role in ZAP-70 and may allosterically regulate the function of the nearby SH2 domains.


Subject(s)
Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Receptors, Antigen, T-Cell/metabolism , Allosteric Regulation , Animals , Binding Sites , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinases/metabolism , Mutagenesis, Site-Directed , Phosphorylation , Protein-Tyrosine Kinases/chemistry , Signal Transduction , Tyrosine/chemistry , ZAP-70 Protein-Tyrosine Kinase , src Homology Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...