Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Epigenetics ; 19(1): 2391602, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39151128

ABSTRACT

Cattle farming faces challenges linked to intensive exploitation and climate change, requiring the reinforcement of animal resilience in response to these dynamic environments. Currently, genetic selection is used to enhance resilience by identifying animals resistant to specific diseases; however, certain diseases, such as mastitis, pose difficulties in genetic prediction. This study introduced the utilization of enzymatic methyl sequencing (EM-seq) of the blood genomic DNA from twelve dairy cows to identify DNA methylation biomarkers, with the aim of predicting resilience and susceptibility to mastitis. The analysis uncovered significant differences between cows resilient and susceptible to mastitis, with 196,275 differentially methylated cytosines (DMCs) and 1,227 Differentially Methylated Regions (DMRs). Key genes associated with the immune response and morphological traits, including ENOPH1, MYL10 and KIR2DL5A, were identified by our analysis. Quantitative trait loci (QTL) were also highlighted and the body weight trait was the most targeted by DMCs and DMRs. Based on our results, the risk of developing mastitis can potentially be estimated with as few as fifty methylation biomarkers, paving the way for early animal selection. This research sets the stage for improved animal health management and economic yields within the framework of agricultural sustainability through early selection based on the epigenetic status of animals.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Mastitis, Bovine , Quantitative Trait Loci , Animals , Cattle/genetics , Female , Mastitis, Bovine/genetics , Genetic Predisposition to Disease , Genetic Markers
2.
Biol Reprod ; 111(3): 567-579, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-38857381

ABSTRACT

Choline is a vital micronutrient. In this study, we aimed to confirm, and expand on previous findings, how choline impacts embryos from the first 7 days of development to affect postnatal phenotype. Bos indicus embryos were cultured in a choline-free medium (termed vehicle) or medium supplemented with 1.8 mM choline. Blastocyst-stage embryos were transferred into crossbred recipients. Once born, calves were evaluated at birth, 94 days, 178 days, and at weaning (average age = 239 days). Following weaning, all calves were enrolled into a feed efficiency trial before being separated by sex, with males being slaughtered at ~580 days of age. Results confirm that exposure of 1.8 mM choline chloride during the first 7 days of development alters postnatal characteristics of the resultant calves. Calves of both sexes from choline-treated embryos were consistently heavier through weaning and males had heavier testes at 3 months of age. There were sex-dependent alterations in DNA methylation in whole blood caused by choline treatment. After weaning, feed efficiency was affected by an interaction with sex, with choline calves being more efficient for females and less efficient for males. Calves from choline-treated embryos were heavier, or tended to be heavier, than calves from vehicle embryos at all observations after weaning. Carcass weight was heavier for choline calves and the cross-sectional area of the longissimus thoracis muscle was increased by choline.


Subject(s)
Blastocyst , Choline , DNA Methylation , Animals , Choline/pharmacology , Choline/administration & dosage , Cattle , Female , DNA Methylation/drug effects , Male , Blastocyst/drug effects , Blastocyst/metabolism , Body Size/drug effects , Animals, Newborn , Embryo Transfer/veterinary , Embryo Culture Techniques/veterinary
3.
Theriogenology ; 215: 241-248, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38100996

ABSTRACT

Sperm small non-coding RNAs (sncRNAs), such as microRNAs (miRNAs) and tRNA-derived small RNAs (tsRNAs), have been found to have implications for male fertility and play a role in the intergenerational transmission of specific phenotypes by influencing the early embryo's physiological processes in various animal species. This study postulates that there exists a correlation between sperm small non-coding RNAs (sncRNAs) and bull fertility, which in turn can influence the fertility of offspring through the modulation of early embryo development. To investigate this hypothesis, we generated comparative libraries of sperm sncRNAs from sires exhibiting high (n = 3) versus low bull fertility (n = 3), as well as high (n = 3) versus low daughter fertility (n = 3), as determined by the industry-standard Bull fertility index and Daughter fertility index. In total, 12 tsRNAs carried by sperm (11 down-regulated and 1 up-regulated) were found to be associated with bull fertility, while 19 tsRNAs (11 down-regulated and 8 up-regulated) were found to be associated with daughter fertility (q < 0.05, Log2foldchange>±1.5, base mean > 50). Notably, tRX-Glu-NNN-3811 exhibited potential as a biomarker for predicting fertility in both male and female dairy cattle. Moreover, a total of six miRNAs sperm-borne (two up-regulated and four down-regulated) and 35 miRNAs (27 up-regulated and eight down-regulated) exhibited a significant correlation with both bull fertility and daughter fertility individually (p < 0.05, base mean > 50, log2foldchange>±1.5), two microRNAs, namely miR-2385-5p (down-regulated) and miR-98 (up-regulated), exhibit a significant association (p < 0.05, base mean > 50, log2foldchange>±1.5) with the fertility of both bulls and daughter. The targets of these two microRNAs were subsequently identified and integrated with the transcriptomic database of the embryonic cells at the two-cell stage, which is known to be indicative of embryonic competence. The KEGG analysis revealed a potential correlation between these targets and choline metabolism, a crucial factor in embryonic epigenetic programming. In summary, the findings of this study indicate that sperm-borne small non-coding RNAs (sncRNAs) hold promise as biomarkers for predicting and enhancing fertility in dairy cattle. Furthermore, it is plausible that these sncRNAs may exert their effects on daughter fertility by targeting genes in the early embryo.


Subject(s)
MicroRNAs , RNA, Small Untranslated , Male , Cattle/genetics , Animals , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Semen/metabolism , Fertility/genetics , Spermatozoa/physiology , RNA, Small Untranslated/metabolism
4.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37798252

ABSTRACT

The emergence of massive datasets exploring the multiple levels of molecular biology has made their analysis and knowledge transfer more complex. Flexible tools to manage big biological datasets could be of great help for standardizing the usage of developed data visualizations and integration methods. Business intelligence (BI) tools have been used in many fields as exploratory tools. They have numerous connectors to link numerous data repositories with a unified graphic interface, offering an overview of data and facilitating interpretation for decision makers. BI tools could be a flexible and user-friendly way of handling molecular biological data with interactive visualizations. However, it is rather uncommon to see such tools used for the exploration of massive and complex datasets in biological fields. We believe that two main obstacles could be the reason. Firstly, we posit that the way to import data into BI tools are not compatible with biological databases. Secondly, BI tools may not be adapted to certain particularities of complex biological data, namely, the size, the variability of datasets and the availability of specialized visualizations. This paper highlights the use of five BI tools (Elastic Kibana, Siren Investigate, Microsoft Power BI, Salesforce Tableau and Apache Superset) onto which the massive data management repository engine called Elasticsearch is compatible. Four case studies will be discussed in which these BI tools were applied on biological datasets with different characteristics. We conclude that the performance of the tools depends on the complexity of the biological questions and the size of the datasets.


Subject(s)
Datasets as Topic , Software , Data Visualization
5.
Sci Technol Adv Mater ; 23(1): 735-751, 2022.
Article in English | MEDLINE | ID: mdl-36386551

ABSTRACT

A wide band gap semiconductor power module can operate at higher voltages as compared with its traditional silicon counterpart. However, its insulating system undergoes stronger electric fields at the triple point between the ceramic substrate, the metallic tracks and the encapsulating polymer, which can dramatically reduce its lifespan. Here we report an original concept based on the local modification of the substrate properties to mitigate such electrical stress. Numerical simulations revealed its potential to reduce this constraint by up to 50%. This concept was realized by developing, through a practical approach, a novel substrate made of an AlN-based ceramic (material A) integrating a nanocomposite volume endowed with controlled properties and geometry. This approach implies first the spark plasma sintering of the AlN powder with additives (Y2O3, CaF2) to endow the material A with a very low electrical conductivity (σ) and high thermal conductivity (k). Graphene nanoplatelets (GNP) were incorporated within this material to fabricate a nanocomposite with a controlled σ anisotropy that otherwise reached a striking ratio of 106 at 20°C for 1.25 vol% GNP. Our approach secondly aimed at developing an effective process allowing to integrate this nanocomposite into the material A with a very high degree of reproducibility. It finally consisted in establishing the electrical contacts on the achieved substrate and encapsulating it for breakdown testing. The novel substrate enabled a mitigation of the electrical constraint by diminishing its intensity and shifting it from the triple point to a less constrained area. It already brought an improvement in breakdown voltage (VB) by 15% as compared to the traditional substrate, and revealed the potential for achieving higher VB as well. This work lays the foundation for the development of novel multifunctional ceramic-matrix composite substrates sought for power electronics as well as for other potential applications.

6.
Nucleic Acids Res ; 47(D1): D403-D410, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30299502

ABSTRACT

Advances in proteomics and sequencing have highlighted many non-annotated open reading frames (ORFs) in eukaryotic genomes. Genome annotations, cornerstones of today's research, mostly rely on protein prior knowledge and on ab initio prediction algorithms. Such algorithms notably enforce an arbitrary criterion of one coding sequence (CDS) per transcript, leading to a substantial underestimation of the coding potential of eukaryotes. Here, we present OpenProt, the first database fully endorsing a polycistronic model of eukaryotic genomes to date. OpenProt contains all possible ORFs longer than 30 codons across 10 species, and cumulates supporting evidence such as protein conservation, translation and expression. OpenProt annotates all known proteins (RefProts), novel predicted isoforms (Isoforms) and novel predicted proteins from alternative ORFs (AltProts). It incorporates cutting-edge algorithms to evaluate protein orthology and re-interrogate publicly available ribosome profiling and mass spectrometry datasets, supporting the annotation of thousands of predicted ORFs. The constantly growing database currently cumulates evidence from 87 ribosome profiling and 114 mass spectrometry studies from several species, tissues and cell lines. All data is freely available and downloadable from a web platform (www.openprot.org) supporting a genome browser and advanced queries for each species. Thus, OpenProt enables a more comprehensive landscape of eukaryotic genomes' coding potential.


Subject(s)
Eukaryota/genetics , Genes/genetics , Genome , Open Reading Frames/genetics , Proteome/genetics , Algorithms , Animals , Humans , Mass Spectrometry , Molecular Sequence Annotation , Protein Isoforms/genetics , Proteomics/methods , Ribosomes/metabolism , Sequence Homology, Amino Acid
7.
Materials (Basel) ; 11(10)2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30287768

ABSTRACT

Multilayer ceramic capacitors (MLCC) are essential components for determining the reliability of electronic components in terms of time to failure. It is known that the reliability of MLCCs depends on their composition, processing, and operating conditions. In this present work, we analyzed the lifetime of three similar X7R type MLCCs based on BaTiO3 by conducting High Accelerated Life Tests (HALT) at temperatures up to 200 °C at 400 V and 600 V. The results were adjusted to an Arrhenius equation, which is a function of the activation energy (Ea) and a voltage stress exponent (n), in order to predict their time to failure. The values of Ea are in the range of 1⁻1.45 eV, which has been reported for the thermal failure and dielectric wear out of BaTiO3-based dielectric capacitors. The stress voltage exponent value was in the range of 4⁻5. Although the Ea can be associated with a failure mechanism, n only gives an indication of the effect of voltage in the tests. It was possible to associate those values with each type of tested MLCC so that their expected life could be estimated in the range of 400⁻600 V.

8.
Phys Chem Chem Phys ; 18(37): 26166-26176, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27711663

ABSTRACT

Transition metal spinel oxides have recently been suggested for the creation of efficient photovoltaic cells or photocatalysts. These compounds can be easily tuned by doping to adapt their electronic or magnetic properties. However, their cation distribution is very complex and band structures are still a subject of controversy. We propose a complete density functional theory investigation of MnxCo3-xO4 compounds, using different approximations in order to explain the variation of these properties as a function of composition (for 0 ≤ x ≤ 3) and determine the electronic structure over the whole solid solution range. A detailed study of their atomic structure, magnetic properties and electronic structure is given and compared with experimental data. The unit cell volume calculated for each composition is in agreement with the volume obtained experimentally in ceramics, while a cubic-to-tetragonal structural transition is predicted at x = 2.0. An antiferromagnetic to ferrimagnetic behavior is observed at the lowest ordering temperature depending on the composition. The band gap, deduced from our band structure calculations, strongly decreases upon doping of the end members Co3O4 and Mn3O4, but is partly restored by the tetragonal distortion. A direct band gap, close to 0.5-0.8 eV, is calculated for 0.25 ≤ x ≤ 2.25, justified by inter-metal transitions from Mn ions on octahedral sites.

9.
Phys Chem Chem Phys ; 17(26): 16864-75, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26058428

ABSTRACT

Nb and In co-doped rutile TiO2 nanoceramics (n-NITO) were successfully synthesized through a chemical-solution route combined with a low temperature spark plasma sintering (SPS) technique. The particle morphology and the microstructure of n-NITO compounds were nanometric in size. Various techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG)/differential thermal analysis (DTA), Fourier transform infrared (FTIR), and Raman spectroscopy were used for the structural and compositional characterization of the synthesized compound. The results indicated that the as-synthesized n-NITO oxalate as well as sintered ceramic have a co-doped single phase of titanyl oxalate and rutile TiO2, respectively. Broadband impedance spectroscopy revealed that novel colossal permittivity (CP) was achieved in n-NITO ceramics exhibiting excellent temperature-frequency stable CP (up to 10(4)) as well as low dielectric loss (∼5%). Most importantly, detailed impedance data analyses of n-NITO compared to microcrystalline NITO (µ-NITO) demonstrated that the origin of CP in NITO bulk nanoceramics might be related with the pinned electrons in defect clusters and not to extrinsic interfacial effects.

10.
Invest Ophthalmol Vis Sci ; 55(10): 6575-9, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-25190655

ABSTRACT

PURPOSE: Optical coherence tomography (OCT) was used to analyze the thickness of various retinal layers of patients following successful macula-off retinal detachment (RD) repair. METHODS: Optical coherence tomography scans of patients after successful macula-off RD repair were reanalyzed with a subsegmentation algorithm to measure various retinal layers. Regression analysis was performed to correlate time after surgery with changes in layer thickness. In addition, patients were divided in two groups. Group 1 had a follow-up period after surgery of up to 7 weeks (range, 21-49 days). In group 2, the follow-up period was >8 weeks (range, 60-438 days). Findings were compared to a group of age-matched healthy controls. RESULTS: Correlation analysis showed a significant positive correlation between inner nuclear-outer plexiform layer (INL-OPL) thickness and time after surgery (P=0.0212; r2=0.1551). Similar results were found for the ellipsoid zone-retinal pigment epithelium complex (EZ-RPE) thickness (P=0.005; r2=0.2215). Ganglion cell-inner plexiform layer thickness (GCL-IPL) was negatively correlated with time after surgery (P=0.0064; r2=0.2101). For group comparison, the retinal nerve fiber layer in both groups was thicker compared to controls. The GCL-IPL showed significant thinning in group 2. The outer nuclear layer was significantly thinner in groups 1 and 2 compared to controls. The EZ-RPE complex was significantly thinner in groups 1 and 2 compared to controls. In addition, values in group 1 were significantly thinner than in group 2. CONCLUSIONS: Optical coherence tomography retinal layer thickness measurements after successful macular-off RD repair revealed time-dependent thickness changes. Inner nuclear-outer plexiform layer thickness and EZ-RPE thickness was positively correlated with time after surgery. Ganglion cell-inner plexiform layer thickness was negatively correlated with time after surgery.


Subject(s)
Retinal Detachment/diagnosis , Retinal Ganglion Cells/pathology , Surgery, Computer-Assisted/methods , Tomography, Optical Coherence/methods , Vitrectomy/methods , Female , Follow-Up Studies , Humans , Macula Lutea/pathology , Macula Lutea/surgery , Male , Middle Aged , Retinal Detachment/surgery , Retrospective Studies , Time Factors , Treatment Outcome
11.
Phys Chem Chem Phys ; 16(6): 2568-75, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24382447

ABSTRACT

(18)O/(16)O exchange annealing and subsequent Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) analysis is used to investigate oxygen transport in dense, nanocrystalline (average grain size d ≈ 300 nm) ceramics of nominally un-doped BaTiO3. Isotope penetration profiles are obtained as a function of temperature, 973 < T/K < 1173, at an oxygen activity aO2 = 0.20 and as a function of oxygen activity, 0.002 < aO2 < 0.20, at T = 1073 K. All isotope profiles show the same unusual shape: a flattened profile over the first ∼10(2) nm, followed by a short, conventional diffusion profile. We demonstrate that the entire isotope profile can be described quantitatively by a numerical solution to the diffusion equation based on an increase in the local oxygen diffusion coefficient close to the surface. This position-dependent increase is attributed to additional oxygen vacancies that are generated by diffusion of chlorine impurities out of the ceramics. The presence of chlorine derives from the chemical route necessary to produce nanometric powders: it thus indicates a new manner in which nanocrystalline ceramics may differ from their microcrystalline counterparts.

12.
J Biomater Appl ; 28(5): 697-707, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23418200

ABSTRACT

The setup of colloidal hybrid nanosystems based on biomimetic calcium phosphate apatites doped with europium ions has recently raised great interest in the pharmacological community, especially due to their bio-inspired character. This is especially relevant in relation with medical imaging for cancer diagnosis. Questions however remain in relation to a number of applicability aspects, some of which have been examined in this contribution. In a first part of this work, we explored further the luminescence properties of such colloidal nanoparticles. We pointed out, upon excitation of europium, the existence of some non-radiative de-excitation via the vibration of O-H oscillators located at the vicinity of the Eu(3+) luminescent centers. The replacement of Eu(3+) by Tb(3+) ions, less prone to non-radiative de-excitation, was then tested in a preliminary way and can be seen as a promising alternative. In a second part of this work, we inspected the possibility to store these colloids in a dry state while retaining a re-suspension ability preserving the nanometer size of the initial nanoparticles, and we propose a functional protocol involving the addition of glucose prior to freeze-drying. We finally showed for the first time, based on titrations of intracellular Ca(2+) and Eu(3+) ions, that folic acid-functionalized biomimetic apatite nanoparticles were able to target cancer cells that overexpress folate receptors on their membrane, which we point out here in the case of T-47-D breast carcinoma cells, as opposed to ZR-75-1 cells that do not express folate receptors. This contribution thus opens new exciting perspectives in the field of targeted cancer diagnosis, thus confirming the promise of biomimetic apatites-based colloidal formulations.


Subject(s)
Apatites/chemistry , Colloids , Diagnostic Imaging , Cell Line, Tumor , Folic Acid/chemistry , Humans , Luminescence
13.
Ophthalmology ; 121(1): 142-149, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24139122

ABSTRACT

PURPOSE: To investigate retrograde axonal degeneration for its potential to cause microcystic macular edema (MME), a maculopathy that has been previously described in patients with demyelinating disease. To identify risk factors for MME and to expand the anatomic knowledge on MME. DESIGN: Retrospective case series. PARTICIPANTS: We included 117 consecutive patients and 180 eyes with confirmed optic neuropathy of variable etiology. Patients with glaucoma were excluded. METHODS: We determined age, sex, visual acuity, etiology of optic neuropathy, and the temporal and spatial characteristics of MME. Eyes with MME were compared with eyes with optic neuropathy alone and to healthy fellow eyes. With retinal layer segmentation we quantitatively measured the intraretinal anatomy. MAIN OUTCOME MEASURES: Demographic data, distribution of MME in the retina, and thickness of retinal layers were analyzed. RESULTS: We found MME in 16 eyes (8.8%) from 9 patients, none of whom had multiple sclerosis or neuromyelitis optica. The MME was restricted to the inner nuclear layer (INL) and had a characteristic perifoveal circular distribution. Compared with healthy controls, MME was associated with significant thinning of the ganglion cell layer and nerve fiber layer, as well as a thickening of the INL and the deeper retinal layers. Youth is a significant risk factor for MME. CONCLUSIONS: Microcystic macular edema is not specific for demyelinating disease. It is a sign of optic neuropathy irrespective of its etiology. The distinctive intraretinal anatomy suggests that MME is caused by retrograde degeneration of the inner retinal layers, resulting in impaired fluid resorption in the macula.


Subject(s)
Axons/pathology , Macular Edema/etiology , Optic Nerve Diseases/complications , Female , Humans , Macular Edema/diagnosis , Magnetic Resonance Imaging , Male , Nerve Degeneration/pathology , Retinal Ganglion Cells/pathology , Retrospective Studies , Risk Factors , Time Factors , Tomography, Optical Coherence , Visual Acuity/physiology
14.
IEEE Trans Med Imaging ; 32(3): 531-43, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23086520

ABSTRACT

Optical coherence tomography (OCT) is a well-established image modality in ophthalmology and used daily in the clinic. Automatic evaluation of such datasets requires an accurate segmentation of the retinal cell layers. However, due to the naturally low signal to noise ratio and the resulting bad image quality, this task remains challenging. We propose an automatic graph-based multi-surface segmentation algorithm that internally uses soft constraints to add prior information from a learned model. This improves the accuracy of the segmentation and increase the robustness to noise. Furthermore, we show that the graph size can be greatly reduced by applying a smart segmentation scheme. This allows the segmentation to be computed in seconds instead of minutes, without deteriorating the segmentation accuracy, making it ideal for a clinical setup. An extensive evaluation on 20 OCT datasets of healthy eyes was performed and showed a mean unsigned segmentation error of 3.05 ±0.54 µm over all datasets when compared to the average observer, which is lower than the inter-observer variability. Similar performance was measured for the task of drusen segmentation, demonstrating the usefulness of using soft constraints as a tool to deal with pathologies.


Subject(s)
Algorithms , Diagnostic Techniques, Ophthalmological , Image Processing, Computer-Assisted/methods , Models, Biological , Tomography, Optical Coherence/methods , Databases, Factual , Humans , Macular Degeneration/pathology , Models, Statistical , Retina/anatomy & histology , Retina/pathology , Retinal Drusen/pathology
15.
Int J Pharm ; 423(1): 26-36, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-21771647

ABSTRACT

Nanocrystalline calcium phosphate apatites constitute the mineral part of hard tissues, and the synthesis of biomimetic analogs is now well-mastered at the lab-scale. Recent advances in the fine physico-chemical characterization of these phases enable one to envision original applications in the medical field along with a better understanding of the underlying chemistry and related pharmacological features. In this contribution, we specifically focused on applications of biomimetic apatites in the field of cancer diagnosis or treatment. We first report on the production and first biological evaluations (cytotoxicity, pro-inflammatory potential, internalization by ZR-75-1 breast cancer cells) of individualized luminescent nanoparticles based on Eu-doped apatites, eventually associated with folic acid, for medical imaging purposes. We then detail, in a first approach, the preparation of tridimensional constructs associating nanocrystalline apatite aqueous gels and drug-loaded pectin microspheres. Sustained releases of a fluorescein analog (erythrosin) used as model molecule were obtained over 7 days, in comparison with the ceramic or microsphere reference compounds. Such systems could constitute original bone-filling materials for in situ delivery of anticancer drugs.


Subject(s)
Apatites/chemistry , Biomimetic Materials/chemistry , Diagnostic Imaging/methods , Drug Delivery Systems/methods , Nanoparticles/chemistry , Neoplasms/diagnosis , Neoplasms/drug therapy , Apatites/chemical synthesis , Apatites/pharmacology , Biological Availability , Biomimetic Materials/chemical synthesis , Biomimetic Materials/pharmacology , Calcium Compounds/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Delayed-Action Preparations/chemical synthesis , Delayed-Action Preparations/chemistry , Endocytosis/physiology , Erythrosine/administration & dosage , Erythrosine/chemistry , Erythrosine/pharmacokinetics , Europium/chemistry , Folic Acid/chemistry , Humans , Luminescent Measurements , Mesenchymal Stem Cells/drug effects , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Microspheres , Monocytes/drug effects , Monocytes/metabolism , Nitrates/chemistry , Organophosphates/chemistry , Particle Size , Pectins/chemistry , Phosphates/chemistry , Reactive Oxygen Species/metabolism , Spectroscopy, Fourier Transform Infrared , Static Electricity , Water/chemistry , X-Ray Diffraction
16.
Med Image Comput Comput Assist Interv ; 15(Pt 3): 599-606, 2012.
Article in English | MEDLINE | ID: mdl-23286180

ABSTRACT

With improvements in acquisition speed and quality, the amount of medical image data to be screened by clinicians is starting to become challenging in the daily clinical practice. To quickly visualize and find abnormalities in medical images, we propose a new method combining segmentation algorithms with statistical shape models. A statistical shape model built from a healthy population will have a close fit in healthy regions. The model will however not fit to morphological abnormalities often present in the areas of pathologies. Using the residual fitting error of the statistical shape model, pathologies can be visualized very quickly. This idea is applied to finding drusen in the retinal pigment epithelium (RPE) of optical coherence tomography (OCT) volumes. A segmentation technique able to accurately segment drusen in patients with age-related macular degeneration (AMD) is applied. The segmentation is then analyzed with a statistical shape model to visualize potentially pathological areas. An extensive evaluation is performed to validate the segmentation algorithm, as well as the quality and sensitivity of the hinting system. Most of the drusen with a height of 85.5 microm were detected, and all drusen at least 93.6 microm high were detected.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Models, Biological , Optic Disk Drusen/pathology , Pattern Recognition, Automated/methods , Tomography, Optical Coherence/methods , Artificial Intelligence , Computer Simulation , Humans , Image Enhancement/methods , Models, Statistical , Reproducibility of Results , Sensitivity and Specificity
17.
Colloids Surf B Biointerfaces ; 82(2): 378-84, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-20970967

ABSTRACT

The field of nanobiotechnology has lately attracted much attention both from therapeutic and diagnosis viewpoints. Of particular relevance is the development of colloidal formulations of biocompatible nanoparticles capable of interacting with selected cells or tissues. In this context, the purification of such nanoparticle suspensions appears as a critical step as residues of unreacted species may jeopardize biological and medical outcomes, and sample purity is thus increasingly taken into account by regulatory committees. In the present work, we have investigated from a physico-chemical point of view the purification by dialysis of recently developed hybrid colloids based on biomimetic nanocrystalline apatites intended for interacting with cells. Both Eu-doped (2mol.% relative to Ca) and Eu-free suspensions were studied. The follow-up of the dialysis process was carried out by way of FTIR, TEM, XRD, pH and conductivity measurements. Mathematical modelling of conductivity data was reported. The effects of a change in temperature (25 and 45°C), dialysis medium, and starting colloid composition were evaluated and discussed. We show that the dialysis method is a well-adapted and cheap technique to purify such mineral-organic hybrid suspensions in view of biomedical applications, and we point out some of the characterization techniques that may prove helpful for following the evolution of the purification process with time.


Subject(s)
Apatites/chemistry , Biomimetics , Biotechnology/methods , Colloids/chemistry , Nanotechnology/methods , Biocompatible Materials , Calcium/chemistry , Electric Conductivity , Equipment Design , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission/methods , Models, Chemical , Models, Theoretical , Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature
18.
J Neurosci Methods ; 194(2): 206-17, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-20951737

ABSTRACT

This technique proposes a new approach to correlate intra- and extracellular variations of the ionic concentrations in vivo by means of tapered optical waveguides coupled to standard electrophysiological electrodes to monitor in vivo simultaneously the intracellular and extracellular K(+) concentration as well as the neighboring field potential. The optical fibers were tapered to a final diameter of approximately 10 µm and were used to guide the excitation light deep into the tissue and to collect the fluorescence emanating from the intracellular milieu. This fiber was coupled to a double barrel ion-sensitive electrode forming a micro-optrode with a final diameter around 15 µm. The method was successfully used to record the intracellular K(+) evolution with the fluorescent indicator PBFI during three states: normal sleep-like patterns, paroxysmal seizures, and coma. While we could not disclose any phasic fluctuations of the intracellular K(+) during normal sleep patterns, they were clearly present during seizures and coma. In the majority of cases (58%), paroxysmal discharges were associated with positive variations of the intracellular fluorescence of 62±5% corresponding to extracellular K(+) increases of 2.04±0.4 mM. In the remaining cases (42%) intracellular K(+) dropped by 44.4±12% for an extracellular K(+) increase of 2.62±0.47 mM. We suggest that this differential behavior might reflect different cellular populations (glia vs. neurons, respectively). Comatose states were accompanied by an extracellular drop of K(+) of 1.31±0.13 mM, which was reflected, in all cases, by an intracellular K(+) increase of 39±4%.


Subject(s)
Extracellular Fluid/metabolism , Fiber Optic Technology , Intracellular Fluid/metabolism , Ion-Selective Electrodes , Neurons/cytology , Potassium/metabolism , Animals , Benzofurans/metabolism , Brain/cytology , Cats , Coma/etiology , Coma/metabolism , Coma/pathology , Databases, Factual/statistics & numerical data , Electroencephalography , Ethers, Cyclic/metabolism , Fiber Optic Technology/instrumentation , Fiber Optic Technology/methods , Glial Fibrillary Acidic Protein/metabolism , Potassium/adverse effects , Reproducibility of Results , Seizures/chemically induced , Seizures/pathology , Sleep/physiology
19.
Langmuir ; 25(20): 12256-65, 2009 Oct 20.
Article in English | MEDLINE | ID: mdl-19821625

ABSTRACT

Intracellular drug delivery using colloidal biomimetic calcium phosphate apatites as nanocarriers is a seducing concept. However, the colloid preparation to an industrial scale requires the use of easily handled raw materials as well as the possibility to tailor the nanoparticles size. In this work, the stabilization of the colloids was investigated with various biocompatible agents. Most interestingly, nanoscale colloids were obtained without the need for toxic and/or hazardous raw materials. Physico-chemical characteristics were investigated by chemical analyses, dynamic light scattering, FTIR/Raman spectroscopies, XRD, and electron microscopy. A particularly promising colloidal system associates biomimetic apatite stabilized with a natural phospholipid moiety (AEP(r), 2-aminoethylphosphoric acid). Complementary data described such colloids as apatite nanocrystals covered with surface Ca(2+)(AEP(r)(-))(2) complexes involving "supernumerary" Ca(2+) ions. The effects of the concentration in AEPr, synthesis temperature, duration of aging in solution, pH, and sonication were followed, showing that it is possible to modulate the mean size of the nanoparticles, typically in the range 30-100 nm. The perfect biocompatibility of such colloids allied to the possibility to prepare them from innocuous compounds shows great promise for intracellular drug delivery.


Subject(s)
Apatites/chemistry , Apatites/metabolism , Drug Carriers/chemistry , Drug Carriers/metabolism , Intracellular Space/metabolism , Nanoparticles/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Humans , Hydrogen-Ion Concentration , Microscopy, Electron , Particle Size , Salts/chemistry , Sonication , Spectroscopy, Fourier Transform Infrared , Surface Properties , Suspensions , Temperature , Water/chemistry , X-Ray Diffraction
20.
Appl Opt ; 45(36): 9246-52, 2006 Dec 20.
Article in English | MEDLINE | ID: mdl-17151766

ABSTRACT

In conventional two-photon excitation fluorescence microscopy, the numerical aperture of the objective determines the lateral resolution and the depth of field. In some situations, as with functional imaging of dynamic events distributed in live biological tissue, an improved temporal resolution is needed; as a consequence, it is imperative to use optics with a high depth of field to simultaneously image objects at different axial positions. With a conventional microscope objective, increasing the depth of field is achieved at the expense of lateral resolution. To overcome this limitation, we have incorporated an axicon in a two-photon excitation fluorescence microscopy system; measurements have shown that an axicon provides a depth of field in excess of a millimeter, while the lateral resolution is maintained at the micrometer scale. Thus axicon-based two-photon microscopy has been shown to yield a high-resolution projection image of a sample with a single 2D scan of the laser beam while maintaining the improved tissue penetration typical of two-photon microscopy.


Subject(s)
Image Enhancement/instrumentation , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/instrumentation , Information Storage and Retrieval/methods , Lenses , Microscopy, Fluorescence, Multiphoton/instrumentation , Refractometry/instrumentation , Equipment Design , Equipment Failure Analysis , Image Enhancement/methods , Image Interpretation, Computer-Assisted/instrumentation , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence, Multiphoton/methods , Refractometry/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL