Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1245510, 2023.
Article in English | MEDLINE | ID: mdl-38487210

ABSTRACT

Streptococcus thermophilus is of major importance for cheese manufacturing to ensure rapid acidification; however, studies indicate that intensive use of commercial strains leads to the loss of typical characteristics of the products. To strengthen the link between the product and its geographical area and improve the sensory qualities of cheeses, cheese-producing protected designations of origin (PDO) are increasingly interested in the development of specific autochthonous starter cultures. The present study is therefore investigating the genetic and functional diversity of S. thermophilus strains isolated from a local cheese-producing PDO area. Putative S. thermophilus isolates were isolated and identified from milk collected in the Saint-Nectaire cheese-producing PDO area and from commercial starters. Whole genomes of isolates were sequenced, and a comparative analysis based on their pan-genome was carried out. Important functional properties were studied, including acidifying and proteolytic activities. Twenty-two isolates representative of the diversity of the geographical area and four commercial strains were selected for comparison. The resulting phylogenetic trees do not correspond to the geographical distribution of isolates. The clustering based on the pan-genome analysis indicates that isolates are divided into five distinct groups. A Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation of the accessory genes indicates that the accessory gene contents of isolates are involved in different functional categories. High variability in acidifying activities and less diversity in proteolytic activities were also observed. These results indicate that high genetic and functional variabilities of the species S. thermophilus may arise from a small (1,800 km2) geographical area and may be exploited to meet demand for use as autochthonous starters.

2.
Microorganisms ; 10(7)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35889100

ABSTRACT

Environmental short amplicon sequencing, or metabarcoding, is commonly used to characterize the bacterial and fungal microbiota of cheese. Comparisons between different metabarcoding studies are complicated by the use of different gene markers. Here, we systematically compare different metabarcoding molecular targets using V3-V4 and V6-V8 regions of the bacterial 16S rDNA and fungal ITS1 and ITS2 regions. Taxonomic profiles varied depending on the molecular markers used. Based on data quality and detection capacity of the markers toward microorganisms usually associated with the dairy environment, the ribosomal regions V3-V4 and ITS2 were selected and further used to evaluate variability in the microbial ecosystem of terroir cheeses from the province of Quebec in Canada. Both fungal and bacterial ecosystem profiles were described for 32 different ready-to-eat bloomy-, washed- and natural-rind specialty cheese varieties. Among them, 15 were studied over two different production years. Using the Bray-Curtis dissimilarity index as an indicator of microbial shifts, we found that most variations could be explained by either a voluntary change in starter or ripening culture composition, or by changes in the cheesemaking technology. Overall, our results suggest the persistence of the microbiota between the two years studied-these data aid understanding of cheese microbiota composition and persistence during cheese ripening.

3.
Viruses ; 14(8)2022 07 25.
Article in English | MEDLINE | ID: mdl-35893685

ABSTRACT

Smear-ripened cheeses host complex microbial communities that play a crucial role in the ripening process. Although bacteriophages have been frequently isolated from dairy products, their diversity and ecological role in such this type of cheese remain underexplored. In order to fill this gap, the main objective of this study was to isolate and characterize bacteriophages from the rind of a smear-ripened cheese. Thus, viral particles extracted from the cheese rind were tested through a spot assay against a collection of bacteria isolated from the same cheese and identified by sequencing the full-length small subunit ribosomal RNA gene. In total, five virulent bacteriophages infecting Brevibacterium aurantiacum, Glutamicibacter arilaitensis, Leuconostoc falkenbergense and Psychrobacter aquimaris species were obtained. All exhibit a narrow host range, being only able to infect a few cheese-rind isolates within the same species. The complete genome of each phage was sequenced using both Nanopore and Illumina technologies, assembled and annotated. A sequence comparison with known phages revealed that four of them may represent at least new genera. The distribution of the five virulent phages into the dairy-plant environment was also investigated by PCR, and three potential reservoirs were identified. This work provides new knowledge on the cheese rind viral community and an overview of the distribution of phages within a cheese factory.


Subject(s)
Bacteriophages , Cheese , Microbiota , Bacteria/genetics , Bacteriophages/genetics , Microbiota/genetics , Sequence Analysis, DNA
4.
Foods ; 11(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35885308

ABSTRACT

Meat represents an important protein source, even in developing countries, but its production is scarcely sustainable, and its excessive consumption poses health issues. An increasing number of Western consumers would replace, at least partially, meat with alternative protein sources. This review aims at: (i) depicting nutritional, functional, sensory traits, and critical issues of single-cell proteins (SCP), filamentous fungi, microalgae, vegetables (alone or mixed with milk), and insects and (ii) displaying how fermentation could improve their quality, to facilitate their use as food items/ingredients/supplements. Production of SCP (yeasts, filamentous fungi, microalgae) does not need arable land and potable water and can run continuously, also using wastes and byproducts. Some filamentous fungi are also consumed as edible mushrooms, and others are involved in the fermentation of traditional vegetable-based foods. Cereals, pseudocereals, and legumes may be combined to offer an almost complete amino acid profile. Fermentation of such vegetables, even in combination with milk-based products (e.g., tarhana), could increase nutrient concentrations, including essential amino acids, and improve sensory traits. Different insects could be used, as such or, to increase their acceptability, as ingredient of foods (e.g., pasta). However, insects as a protein source face with safety concerns, cultural constraints, and a lack of international regulatory framework.

5.
Front Microbiol ; 11: 737, 2020.
Article in English | MEDLINE | ID: mdl-32457706

ABSTRACT

The yeast Geotrichum candidum (teleomorph Galactomyces candidus) is inoculated onto mold- and smear-ripened cheeses and plays several roles during cheese ripening. Its ability to metabolize proteins, lipids, and organic acids enables its growth on the cheese surface and promotes the development of organoleptic properties. Recent multilocus sequence typing (MLST) and phylogenetic analyses of G. candidum isolates revealed substantial genetic diversity, which may explain its strain-dependant technological capabilities. Here, we aimed to shed light on the phenotypic and genetic diversity among eight G. candidum and three Galactomyces spp. strains of environmental and dairy origin. Phenotypic tests such as carbon assimilation profiles, the ability to grow at 35°C and morphological traits on agar plates allowed us to discriminate G. candidum from Galactomyces spp. The genomes of these isolates were sequenced and assembled; whole genome comparison clustered the G. candidum strains into three subgroups and provided a reliable reference for MLST scheme optimization. Using the whole genome sequence as a reference, we optimized an MLST scheme using six loci that were proposed in two previous MLST schemes. This new MLST scheme allowed us to identify 15 sequence types (STs) out of 41 strains and revealed three major complexes named GeoA, GeoB, and GeoC. The population structure of these 41 strains was evaluated with STRUCTURE and a NeighborNet analysis of the combined six loci, which revealed recombination events between and within the complexes. These results hint that the allele variation conferring the different STs arose from recombination events. Recombination occurred for the six housekeeping genes studied, but most likely occurred throughout the genome. These recombination events may have induced an adaptive divergence between the wild strains and the cheesemaking strains, as observed for other cheese ripening fungi. Further comparative genomic studies are needed to confirm this phenomenon in G. candidum. In conclusion, the draft assembly of 11 G. candidum/Galactomyces spp. genomes allowed us to optimize a genotyping MLST scheme and, combined with the assessment of their ability to grow under different conditions, provides a reliable tool to cluster and eventually improves the selection of G. candidum strains.

6.
Food Microbiol ; 85: 103278, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31500705

ABSTRACT

The structure and functioning of microbial communities from fermented foods, including cheese, have been extensively studied during the past decade. However, there is still a lack of information about both the occurrence and the role of viruses in modulating the function of this type of spatially structured and solid ecosystems. Viral metagenomics was recently applied to a wide variety of environmental samples and standardized procedures for recovering viral particles from different type of materials has emerged. In this study, we adapted a procedure originally developed to extract viruses from fecal samples, in order to enable efficient virome analysis of cheese surface. We tested and validated the positive impact of both addition of a filtration step prior to virus concentration and substitution of purification by density gradient ultracentrifugation by a simple chloroform treatment to eliminate membrane vesicles. Viral DNA extracted from the several procedures, as well as a vesicle sample, were sequenced using Illumina paired-end MiSeq technology and the subsequent clusters assembled from the virome were analyzed to assess those belonging to putative phages, plasmid-derived DNA, or even from bacterial chromosomal DNA. The best procedure was then chosen, and used to describe the first cheese surface virome, using Epoisses cheese as example. This study provides the basis of future investigations regarding the ecological importance of viruses in cheese microbial ecosystems.


Subject(s)
Cheese/virology , Metagenome , Metagenomics/methods , Virion/genetics , Bacteriophages/genetics , Microbiota , Virology/methods
7.
Food Res Int ; 125: 108643, 2019 11.
Article in English | MEDLINE | ID: mdl-31554056

ABSTRACT

Sodium reduction in the human diet is currently one of the main concerns for public health agencies and, consequently, has become a challenge for the food industries. In this study, the impact of reduced sodium chloride content (20%) or its partial substitution with potassium chloride in soft ("Camembert"-type) and semi-hard ("Reblochon"-type) cheeses was evaluated. Analyses included physicochemical and biochemical composition, microbial counts, 16S rRNA gene metabarcoding and metatranscriptomic analysis, volatile aroma compounds and sensory analysis. Regarding soft cheeses, the salt content of cheeses affected proteolysis at 21 days of ripening. RNA sequencing revealed that the relative activity of G. candidum increased, whereas that of P. camemberti decreased in reduced salt cheeses in comparison to the controls. Higher global intensity of odor and taste was observed in cheeses with reduced salt content, consistent with higher levels of alcohol and ester components. Regarding semi-hard cheeses, modifications of salt content did not significantly affect either their biochemical parameters and sensory characteristics or their technological microbial composition at day 21 of ripening. Finally, no impact of salt content was observed on the growth of the spoiler Yarrowia lipolytica in soft cheeses. In contrast, reducing salt content increased spoiler growth in semi-hard cheeses, as highlighted by a greater development of Pseudomonas that led to an increase in cheese proteolysis and lipolysis. In conclusion, the effect of reducing salt content is highly dependent on the cheese type. This factor should thus be taken into account by the dairy industry when the reduction of salt content is being considered. Moreover, the quality of raw products, in particular, the level of spoiler microorganisms, must be controlled before use during dairy processes.


Subject(s)
Cheese/analysis , Cheese/microbiology , Potassium Chloride/analysis , Sodium Chloride/analysis , Bacterial Load , Chemical Phenomena , Diet, Sodium-Restricted , Humans , Lipolysis , Proteolysis , Pseudomonas/growth & development , Sensation , Volatile Organic Compounds/analysis , Yarrowia/growth & development
8.
Int J Food Microbiol ; 293: 124-136, 2019 Mar 16.
Article in English | MEDLINE | ID: mdl-30690292

ABSTRACT

In order to encourage Western populations to increase their consumption of vegetables, we suggest turning legumes into novel, healthy foods by applying an old, previously widespread method of food preservation: fermentation. In the present study, a total of 55 strains from different microbial species (isolated from cheese or plants) were investigated for their ability to: (i) grow on a emulsion containing 100% pea proteins and no carbohydrates or on a 50:50 pea:milk protein emulsion containing lactose, (ii) increase aroma quality and reduce sensory off-flavors; and (iii) compete against endogenous micro organisms. The presence of carbohydrates in the mixed pea:milk emulsion markedly influenced the fermentation by strongly reducing the pH through lactic fermentation, whereas the absence of carbohydrates in the pea emulsion promoted alkaline or neutral fermentation. Lactic acid bacteria assigned to Lactobacillus plantarum, Lactobacillus rhamnosus, Lactococcus lactis and Lactobacillus casei species grew well in both the pea and pea:milk emulsions. Most of the fungal strains tested (particularly those belonging to the Mucor and Geotrichum genera) were also able to grow on both emulsions. Although most Actinobacteria and Proteobacteria did not compete with endogenous microbiota (Bacillus), some species such as Hafnia alvei, Acinetobacter johnsonii and Glutamicibacter arilaitensis grew strongly and appeared to restrict the development of the endogenous microbiota when the pea emulsion was inoculated with a combination of three to nine strains. In the mixed emulsions, lactic fermentation inhibited Actinobacteria and Proteobacteria (e.g. Brevibacterium casei, Corynebacterium casei, Staphylococcus lentus) to the greatest extent but also inhibited Bacillus (e.g. Bacillus subtilis and Bacillus licheniformis). Overall, this procedure enabled us to select two microbial consortia able to colonize pea-based products and positively influence the release of volatile compounds by generating a roasted/grilled aroma for the 100% pea emulsion, and a fruity, lactic aroma for the 50:50 pea:milk emulsion. Moreover, the fermentation in the pea-based emulsions reduced the level of hexanal, which otherwise leads to an undesired green pea aroma. Our present results show how the assembly of multiple microbial cultures can help to develop an innovative food product.


Subject(s)
Fermentation , Microbial Consortia , Pea Proteins/analysis , Adult , Animals , Cheese/microbiology , Colony Count, Microbial , DNA, Bacterial/isolation & purification , Emulsions , Firmicutes/isolation & purification , Food Microbiology , Hafnia alvei/isolation & purification , Humans , Lactobacillus plantarum/isolation & purification , Lacticaseibacillus rhamnosus/isolation & purification , Lactococcus lactis/isolation & purification , Lactose/analysis , Middle Aged , Milk/chemistry , Milk/microbiology , Odorants/analysis , Pisum sativum/chemistry , Pisum sativum/microbiology , RNA, Ribosomal, 16S/isolation & purification , Volatile Organic Compounds/analysis , Young Adult
9.
BMC Genomics ; 18(1): 955, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29216827

ABSTRACT

BACKGROUND: Brevibacterium strains are widely used for the manufacturing of surface-ripened cheeses, contributing to the breakdown of lipids and proteins and producing volatile sulfur compounds and red-orange pigments. The objective of the present study was to perform comparative genomic analyses in order to better understand the mechanisms involved in their ability to grow on the cheese surface and the differences between the strains. RESULTS: The genomes of 23 Brevibacterium strains, including twelve strains isolated from cheeses, were compared for their gene repertoire involved in salt tolerance, iron acquisition, bacteriocin production and the ability to use the energy compounds present in cheeses. All or almost all the genomes encode the enzymes involved in ethanol, acetate, lactate, 4-aminobutyrate and glycerol catabolism, and in the synthesis of the osmoprotectants ectoine, glycine-betaine and trehalose. Most of the genomes contain two contiguous genes encoding extracellular proteases, one of which was previously characterized for its activity on caseins. Genes encoding a secreted triacylglycerol lipase or involved in the catabolism of galactose and D-galactonate or in the synthesis of a hydroxamate-type siderophore are present in part of the genomes. Numerous Fe3+/siderophore ABC transport components are present, part of them resulting from horizontal gene transfers. Two cheese-associated strains have also acquired catecholate-type siderophore biosynthesis gene clusters by horizontal gene transfer. Predicted bacteriocin biosynthesis genes are present in most of the strains, and one of the corresponding gene clusters is located in a probable conjugative transposon that was only found in cheese-associated strains. CONCLUSIONS: Brevibacterium strains show differences in their gene repertoire potentially involved in the ability to grow on the cheese surface. Part of these differences can be explained by different phylogenetic positions or by horizontal gene transfer events. Some of the distinguishing features concern biotic interactions with other strains such as the secretion of proteases and triacylglycerol lipases, and competition for iron or bacteriocin production. In the future, it would be interesting to take the properties deduced from genomic analyses into account in order to improve the screening and selection of Brevibacterium strains, and their association with other ripening culture components.


Subject(s)
Brevibacterium/genetics , Cheese/microbiology , Bacteriocins/biosynthesis , Brevibacterium/classification , Brevibacterium/isolation & purification , Brevibacterium/metabolism , Genomics , Glycerol/metabolism , Iron/metabolism , Lipid Metabolism/genetics , Osmotic Pressure , Phenazines/metabolism , Phylogeny
10.
Food Res Int ; 100(Pt 1): 477-488, 2017 10.
Article in English | MEDLINE | ID: mdl-28873711

ABSTRACT

This study evaluated the ability of dairy matrices, different in composition (with and without fat) and structure (liquid and gel), to enhance microorganisms survival through digestion. The viability of three dairy microorganisms Streptococcus thermophilus, Brevibacterium aurantiacum and Hafnia alvei was measured during in vitro and in vivo digestion. S. thermophilus was highly sensitive to gastric stress, and was not found in the duodenal compartment. B. auranticum was moderately sensitive to gastric stress but resistant to duodenal stress. H. alvei was highly resistant to both stresses. LIVE/DEAD confocal microscopy's images, probed the effect of low pH on microorganisms survival. However, in vivo analyses (16S rRNA gene metabarcoding) failed to confirm in vitro observations since tested microorganisms were not detected. Despite of the different evolutions during digestion on buffer capacity, lipolysis, and rheological characteristics, we did not observe any protective effect of the dairy matrices on microorganisms survival.


Subject(s)
Dairy Products/microbiology , Digestion/physiology , Microbial Viability , Streptococcus thermophilus/physiology , Brevibacterium/physiology , Gels/chemistry , Hafnia alvei/physiology , Models, Biological
11.
PLoS One ; 12(1): e0170050, 2017.
Article in English | MEDLINE | ID: mdl-28141846

ABSTRACT

Escherichia coli O157:H7 is a foodborne pathogen that colonizes ruminants. Cattle are considered the primary reservoir of E. coli O157:H7 with super-shedders, defined as individuals excreting > 104 E. coli O157:H7 CFU g-1 feces. The mechanisms leading to the super-shedding condition are largely unknown. Here, we used 16S rRNA gene pyrosequencing to examine the composition of the fecal bacterial community in order to investigate changes in the bacterial microbiota at several locations along the digestive tract (from the duodenum to the rectal-anal junction) in 5 steers previously identified as super-shedders and 5 non-shedders. The overall bacterial community structure did not differ by E. coli O157:H7 shedding status; but several differences in the relative abundance of taxa and OTUs were noted between the two groups. The genus Prevotella was most enriched in the non-shedders while the genus Ruminococcus and the Bacteroidetes phylum were notably enriched in the super-shedders. There was greater bacterial diversity and richness in samples collected from the lower- as compared to the upper gastrointestinal tract (GI). The spiral colon was the only GI location that differed in terms of bacterial diversity between super-shedders and non-shedders. These findings reinforced linkages between E. coli O157:H7 colonization in cattle and the nature of the microbial community inhabiting the digestive tract of super-shedders.


Subject(s)
Bacterial Shedding/physiology , Escherichia coli O157/physiology , Intestines/microbiology , Animals , Biodiversity , Cattle , Discriminant Analysis , Gastrointestinal Microbiome , Principal Component Analysis
13.
Int J Food Microbiol ; 238: 265-273, 2016 Dec 05.
Article in English | MEDLINE | ID: mdl-27710867

ABSTRACT

Surface-ripened cheeses host complex microbial communities responsible for the transformation of milk into cheese as well as the development of important properties in terms of texture, color and sensory perception. In this study, we used high-throughput amplicon sequencing to decipher the bacterial and fungal diversity of 60 cheeses belonging to 12 popular French cheese varieties. Using this approach, 76 bacterial and 44 fungal phylotypes were identified. Major differences were observed between rind and core samples and also according to cheese varieties and manufacturing processes. Occurrence analysis revealed the presence of widespread taxa as well as operational taxonomic units (OTUs) specific to one or several cheese varieties. Finally, we observed patterns specific to the cheese production facility, supporting the importance of indigenous microorganisms for the microbial assemblage of cheese microbiota.


Subject(s)
Bacteria/classification , Cheese/microbiology , Fungi/classification , Microbiota/genetics , Animals , Bacteria/genetics , Base Sequence , DNA, Bacterial/genetics , DNA, Fungal/genetics , DNA, Intergenic/genetics , France , Fungi/genetics , High-Throughput Nucleotide Sequencing , Milk/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
14.
Genome Announc ; 4(4)2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27445372

ABSTRACT

Here, we report the draft genome sequence of Corynebacterium variabile Mu292, which was originally isolated from the surface of Munster, a French smear-ripened cheese. This genome investigation will improve our knowledge on the molecular determinants potentially involved in the adaptation of this strain during the Munster-type cheese manufacturing process.

15.
Front Microbiol ; 7: 536, 2016.
Article in English | MEDLINE | ID: mdl-27148224

ABSTRACT

The microbial communities in cheeses are composed of varying bacteria, yeasts, and molds, which contribute to the development of their typical sensory properties. In situ studies are needed to better understand their growth and activity during cheese ripening. Our objective was to investigate the activity of the microorganisms used for manufacturing a surface-ripened cheese by means of metatranscriptomic analysis. The cheeses were produced using two lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), one ripening bacterium (Brevibacterium aurantiacum), and two yeasts (Debaryomyces hansenii and Geotrichum candidum). RNA was extracted from the cheese rinds and, after depletion of most ribosomal RNA, sequencing was performed using a short-read sequencing technology that generated ~75 million reads per sample. Except for B. aurantiacum, which failed to grow in the cheeses, a large number of CDS reads were generated for the inoculated species, making it possible to investigate their individual transcriptome over time. From day 5 to 35, G. candidum accounted for the largest proportion of CDS reads, suggesting that this species was the most active. Only minor changes occurred in the transcriptomes of the lactic acid bacteria. For the two yeasts, we compared the expression of genes involved in the catabolism of lactose, galactose, lactate, amino acids, and free fatty acids. During ripening, genes involved in ammonia assimilation and galactose catabolism were down-regulated in the two species. Genes involved in amino acid catabolism were up-regulated in G. candidum from day 14 to day 35, whereas in D. hansenii, they were up-regulated mainly at day 35, suggesting that this species catabolized the cheese amino acids later. In addition, after 35 days of ripening, there was a down-regulation of genes involved in the electron transport chain, suggesting a lower cellular activity. The present study has exemplified how metatranscriptomic analyses provide insight into the activity of cheese microbial communities for which reference genome sequences are available. In the future, such studies will be facilitated by the progress in DNA sequencing technologies and by the greater availability of the genome sequences of cheese microorganisms.

16.
Genome Announc ; 4(2)2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26941141

ABSTRACT

Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes.

17.
PLoS One ; 11(1): e0145558, 2016.
Article in English | MEDLINE | ID: mdl-26734727

ABSTRACT

Here we describe the natural occurrence of bacteria of the class Dehalococcoidia (DEH) and their diversity at different depths in anoxic waters of a remote meromictic lake (Lake Pavin) using 16S rRNA gene amplicon sequencing and quantitative PCR. Detected DEH are phylogenetically diverse and the majority of 16S rRNA sequences have less than 91% similarity to previously isolated DEH 16S rRNA sequences. To predict the metabolic potential of detected DEH subgroups and to assess if they encode genes to transform halogenated compounds, we enriched DEH-affiliated genomic DNA by using a specific-gene capture method and probes against DEH-derived 16S rRNA genes, reductive dehalogenase genes and known insertion sequences. Two reductive dehalogenase homologous sequences were identified from DEH-enriched genomic DNA, and marker genes in the direct vicinity confirm that gene fragments were derived from DEH. The low sequence similarity with known reductive dehalogenase genes suggests yet-unknown catabolic potential in the anoxic zone of Lake Pavin.


Subject(s)
Bacterial Proteins/genetics , Chloroflexi/genetics , Lakes/microbiology , Oxidoreductases/genetics , Bacterial Proteins/metabolism , Chloroflexi/classification , Chloroflexi/enzymology , Genome, Bacterial , Oxidoreductases/metabolism , Oxygen/metabolism , Phylogeny , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/classification , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Temperature
18.
Methods Mol Biol ; 1368: 67-82, 2016.
Article in English | MEDLINE | ID: mdl-26614069

ABSTRACT

Oligonucleotide microarrays have been widely used for gene detection and/or quantification of gene expression in various samples ranging from a single organism to a complex microbial assemblage. The success of a microarray experiment, however, strongly relies on the quality of designed probes. Consequently, probe design is of critical importance and therefore multiple parameters should be considered for each probe in order to ensure high specificity, sensitivity, and uniformity as well as potentially quantitative power. Moreover, to assess the complete gene repertoire of complex biological samples such as those studied in the field of microbial ecology, exploratory probe design strategies must be also implemented to target not-yet-described sequences. To design such probes, two algorithms, KASpOD and HiSpOD, have been developed and they are available via two user-friendly web services. Here, we describe the use of this software necessary for the design of highly effective probes especially in the context of microbial oligonucleotide microarrays by taking into account all the crucial parameters.


Subject(s)
Algorithms , Oligonucleotide Array Sequence Analysis/methods , Oligonucleotide Probes , Oligonucleotide Probes/genetics , Proteins/genetics
19.
PLoS One ; 10(4): e0124360, 2015.
Article in English | MEDLINE | ID: mdl-25867897

ABSTRACT

Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process.


Subject(s)
Cheese , Microbiota , Metagenomics , Transcriptome
20.
FEMS Microbiol Lett ; 362(2): 1-11, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25670699

ABSTRACT

Cheese rinds host a specific microbiota composed of both prokaryotes (such as Actinobacteria, Firmicutes and Proteobacteria) and eukaryotes (primarily yeasts and moulds). By combining modern molecular biology tools with conventional, culture-based techniques, it has now become possible to create a catalogue of the biodiversity that inhabits this special environment. Here, we review the microbial genera detected on the cheese surface and highlight the previously unsuspected importance of non-inoculated microflora--raising the question of the latter's environmental sources and their role in shaping microbial communities. There is now a clear need to revise the current view of the cheese rind ecosystem (i.e. that of a well-defined, perfectly controlled ecosystem). Inclusion of these new findings should enable us to better understand the cheese-making process.


Subject(s)
Bacteroidetes/physiology , Cheese/microbiology , Fungi/physiology , Gram-Positive Bacteria/physiology , Microbiota , Proteobacteria/physiology , Bacteroidetes/classification , Bacteroidetes/isolation & purification , Cheese/classification , Food Microbiology , Fungi/classification , Fungi/isolation & purification , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/isolation & purification , Proteobacteria/classification , Proteobacteria/isolation & purification , Yeasts/classification , Yeasts/isolation & purification , Yeasts/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...