Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Neurology ; 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36240095

ABSTRACT

BACKGROUND AND OBJECTIVES: Current genome-wide association studies of ischemic stroke have focused primarily on late onset disease. As a complement to these studies, we sought to identifythe contribution of common genetic variants to risk of early onset ischemic stroke. METHODS: We performed a meta-analysis of genome-wide association studies of early onset stroke (EOS), ages 18-59, using individual level data or summary statistics in 16,730 cases and 599,237 non-stroke controls obtained across 48 different studies. We further compared effect sizes at associated loci between EOS and late onset stroke (LOS) and compared polygenic risk scores for venous thromboembolism between EOS and LOS. RESULTS: We observed genome-wide significant associations of EOS with two variants in ABO, a known stroke locus. These variants tag blood subgroups O1 and A1, and the effect sizes of both variants were significantly larger in EOS compared to LOS. The odds ratio (OR) for rs529565, tagging O1, 0.88 (95% CI: 0.85-0.91) in EOS vs 0.96 (95% CI: 0.92-1.00) in LOS, and the OR for rs635634, tagging A1, was 1.16 (1.11-1.21) for EOS vs 1.05 (0.99-1.11) in LOS; p-values for interaction = 0.001 and 0.005, respectively. Using polygenic risk scores, we observed that greater genetic risk for venous thromboembolism, another prothrombotic condition, was more strongly associated with EOS compared to LOS (p=0.008). DISCUSSION: The ABO locus, genetically predicted blood group A, and higher genetic propensity for venous thrombosis are more strongly associated with EOS than with LOS, supporting a stronger role of prothrombotic factors in EOS.

2.
J Nutr ; 152(4): 1099-1106, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34967850

ABSTRACT

BACKGROUND: Genetic variation in one-carbon metabolism may affect nutrient concentrations and biological functions. However, data on genetic variants associated with blood biomarkers of one-carbon metabolism in US postmenopausal women are limited, and whether these associations were affected by the nationwide folic acid (FA) fortification program is unclear. OBJECTIVES: We investigated associations between genetic variants and biomarkers of one-carbon metabolism using data from the Women's Health Initiative Observational Study. METHODS: In 1573 non-Hispanic White (NHW) and 282 Black/African American, American Indian/Alaska Native, Asian/Pacific Islander, and Hispanic/Latino women aged 50-79 y, 288 nonsynonymous and tagging single-nucleotide variants (SNVs) were genotyped. RBC folate, plasma folate, pyridoxal-5'-phosphate (PLP), vitamin B-12, homocysteine, and cysteine concentrations were determined in 12-h fasting blood. Multivariable linear regression tested associations per variant allele and for an aggregated genetic risk score. Effect modifications before, during, and after nationwide FA fortification were examined. RESULTS: After correction for multiple comparisons, among NHW women, 5,10-methylenetetrahydrofolate reductase (MTHFR) rs1801133 (677C→T) variant T was associated with lower plasma folate (-13.0%; 95% CI: -17.3%, -8.6%) and higher plasma homocysteine (3.5%; 95% CI: 1.7%, 5.3%) concentrations. Other associations for nonsynonymous SNVs included DNMT3A rs11695471 (T→A) with plasma PLP; EHMT2 rs535586 (G→A), TCN2 rs1131603 (L349S A→G), and TCN2 rs35838082 (R188W G→A) with plasma vitamin B-12; CBS rs2851391 (G→A) with plasma homocysteine; and MTHFD1 rs2236224 (G→A) and rs2236225 (R653Q G→A) with plasma cysteine. The influence of FA fortification on the associations was limited. Highest compared with lowest quartiles of aggregated genetic risk scores from SNVs in MTHFR and MTRR were associated with 14.8% to 18.9% lower RBC folate concentrations. Gene-biomarker associations were similar in women of other races/ethnicities. CONCLUSIONS: Our findings on genetic variants associated with several one-carbon metabolism biomarkers may help elucidate mechanisms of maintaining B vitamin status in postmenopausal women.


Subject(s)
Methylenetetrahydrofolate Reductase (NADPH2) , Postmenopause , Aged , Biomarkers , Carbon/metabolism , Female , Folic Acid , Genotype , Histocompatibility Antigens , Histone-Lysine N-Methyltransferase/genetics , Homocysteine , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Middle Aged , Postmenopause/genetics , Women's Health
3.
J Nutr ; 150(11): 2874-2881, 2020 11 19.
Article in English | MEDLINE | ID: mdl-32939549

ABSTRACT

BACKGROUND: Choline plays an integral role in one-carbon metabolism in the body, but it is unclear whether genetic polymorphisms are associated with variations in plasma choline and its metabolites. OBJECTIVES: This study aimed to evaluate the association of genetic variants in choline and one-carbon metabolism with plasma choline and its metabolites. METHODS: We analyzed data from 1423 postmenopausal women in a case-control study nested within the Women's Health Initiative Observational Study. Plasma concentrations of choline, betaine, dimethylglycine (DMG), and trimethylamine N-oxide were determined in 12-h fasting blood samples collected at baseline (1993-1998). Candidate and tagging single-nucleotide polymorphisms (SNPs) were genotyped in betaine-homocysteine S-methyltransferase (BHMT), BHMT2, 5,10-methylenetetrahydrofolate reductase (MTHFR), methylenetetrahydrofolate dehydrogenase (NADP+ dependent 1) (MTHFD1), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), and 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR). Linear regression was used to derive percentage difference in plasma concentrations per variant allele, adjusting for confounders, including B-vitamin biomarkers. Potential effect modification by plasma vitamin B-12, vitamin B-6, and folate concentrations and folic-acid fortification periods was examined. RESULTS: The candidate SNP BHMT R239Q (rs3733890) was associated with lower concentrations of plasma betaine and DMG concentrations (-4.00% and -6.75% per variant allele, respectively; both nominal P < 0.05). Another candidate SNP, BHMT2 rs626105 A>G, was associated with higher plasma DMG concentration (13.0%; P < 0.0001). Several tagSNPs in these 2 genes were associated with plasma concentrations after correction for multiple comparisons. Vitamin B-12 status was a significant effect modifier of the association between the genetic variant BHMT2 rs626105 A>G and plasma DMG concentration. CONCLUSIONS: Genetic variations in metabolic enzymes were associated with plasma concentrations of choline and its metabolites. Our findings contribute to the knowledge on the variation in blood nutrient concentrations in postmenopausal women.


Subject(s)
Choline/metabolism , Gene Expression Regulation, Enzymologic/physiology , One-Carbon Group Transferases/metabolism , Oxidoreductases/metabolism , Polymorphism, Single Nucleotide , Postmenopause , Aged , Biomarkers , Case-Control Studies , Choline/blood , Colorectal Neoplasms , Female , Genetic Variation , Humans , Middle Aged , One-Carbon Group Transferases/genetics , Oxidoreductases/genetics , Risk Factors
4.
J Rheumatol ; 44(11): 1652-1658, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28916551

ABSTRACT

OBJECTIVE: The etiology of knee osteoarthritis (OA), the most common form of arthritis, is complex and may differ by race or ethnicity. In recent years, genetic studies have identified many genetic variants associated with OA, but nearly all the studies were conducted in European whites and Asian Americans. Few studies have focused on the genetics of knee OA in African Americans. METHODS: We performed a genome-wide association study of radiographic knee OA in 1217 African Americans from 2 North American cohort studies: 590 subjects from the Johnston County Osteoarthritis Project and 627 subjects from the Osteoarthritis Initiative. Analyses were conducted in each cohort separately and combined in an inverse variance fixed effects metaanalysis, which were then included in pathway analyses. We additionally tested 12 single-nucleotide polymorphisms robustly associated with OA in European white populations for association in African Americans. RESULTS: We identified a genome-wide significant variant in LINC01006 (minor allele frequency 12%; p = 4.11 × 10-9) that is less common in European white populations (minor allele frequency < 3%). Five other independent loci reached suggestive significance (p < 1 × 10-6). In pathway analyses, dorsal/ventral neural tube patterning and iron ion transport pathways were significantly associated with knee OA in African Americans (false discovery rate < 0.05). We found no evidence that previously reported OA susceptibility variants in European whites were associated with knee OA in African Americans. CONCLUSION: These results highlight differences in the genetic architecture of knee OA between African American and European whites. This finding underscores the need to include more diverse populations in OA genetics studies.


Subject(s)
Black or African American/genetics , Knee Joint/diagnostic imaging , Osteoarthritis, Knee/genetics , Polymorphism, Single Nucleotide , RNA, Long Noncoding/genetics , Aged , Alleles , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Osteoarthritis, Knee/diagnostic imaging , Tomography, X-Ray Computed , White People/genetics
5.
J Natl Cancer Inst ; 109(10)2017 10 01.
Article in English | MEDLINE | ID: mdl-28521362

ABSTRACT

Background: Women with unilateral breast cancer (UBC) are at risk of developing a subsequent contralateral breast cancer (CBC). Common variants are associated with breast cancer risk. Whether these influence CBC risk is unknown. Methods: Participants were breast cancer cases from the population-based Women's Environmental Cancer and Radiation Epidemiology (WECARE) Study. Sixty-seven established breast cancer risk loci were genotyped directly or by imputation in 1459 case subjects with CBC and 2126 UBC control subjects. An unweighted polygenic risk score (PRS) was created by summing the number of risk alleles for each directly genotyped single nucleotide polymorphism (SNP), or for imputed loci, the imputed dosage. A weighted PRS was calculated similarly, but where each SNP's contribution was weighted by the published per-allele log odds ratio. Unweighted and weighted polygenic risk scores and CBC risk were modeled using conditional logistic regression. Cumulative CBC risk was estimated and benchmarked using Surveillance, Epidemiology, and End Results population incidence rates. Results: Both unweighted and weighted PRS were statistically significantly associated with CBC risk. The adjusted risk ratio of CBC in women in the upper quartile of unweighted PRS compared with the lowest quartile was 1.63 (95% confidence interval [CI] = 1.33 to 2.00). The estimated 10-year cumulative risk for women in the upper quartile of the unweighted PRS was 7.4% (95% CI = 6.0% to 9.1%). For women in the upper quartile of the weighted PRS, the risk ratio for CBC was 1.75 (95% CI = 1.41 to 2.18) compared with women in the lowest quartile. There was no statistically significant heterogeneity by age, treatment (radiation therapy dose, tamoxifen, chemotherapy), estrogen receptor status of the first primary, histology of the first primary, length of at-risk period for CBC, or breast cancer family history. Conclusions: Common genomic variants associated with the development of first primary breast cancer are also associated with the development of CBC; the risk is strongest among those who carry more risk alleles.


Subject(s)
Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Neoplasm Recurrence, Local/epidemiology , Neoplasm Recurrence, Local/genetics , Polymorphism, Single Nucleotide , Adult , Breast Neoplasms/pathology , Case-Control Studies , Environmental Exposure/statistics & numerical data , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Middle Aged , SEER Program , United States , Young Adult
6.
Arthritis Rheumatol ; 69(2): 343-351, 2017 02.
Article in English | MEDLINE | ID: mdl-27696742

ABSTRACT

OBJECTIVE: A major barrier to genetic studies of osteoarthritis (OA) is the need to obtain large numbers of individuals with standardized radiographic evaluations for OA. To address this gap, we performed a genome-wide association study (GWAS) of radiographically defined tibiofemoral knee OA in 3,898 cases and 3,168 controls from 4 well-characterized North American cohorts, and we performed replication analysis of previously reported OA loci. METHODS: We performed meta-analysis using a 2-stage design. Stage 1 (discovery) consisted of a GWAS meta-analysis of radiographic knee OA carried out in the Osteoarthritis Initiative and the Johnston County Osteoarthritis Project. Knee OA was defined as definite osteophytes and possible joint space narrowing or total joint replacement in one or both knees. Stage 2 (validation) was performed in the Multicenter Osteoarthritis Study and the Genetics of Osteoarthritis study. We genotyped lead meta-analysis variants (P ≤ 1 × 10-4 ) from stage 1 and tested the association between these variants and knee OA. We then combined results from all cohorts in a meta-analysis. RESULTS: Lead variants from stage 1, representing 49 unique loci, were analyzed in stage 2; none met genome-wide significance in the combined analysis of stage 1 and stage 2. We validated 1 locus (rs4867568 near LSP1P3) with nominal significance (P < 0.05), which was also our top finding in the combined meta-analysis (odds ratio [OR] 0.84 [95% confidence interval (95% CI) 0.79-0.91], P = 3.02 × 10-6 ). We observed nominally significant associations (P < 0.05) with 3 previously reported OA loci: rs143383 in GDF5 (OR 1.12 [95% CI 1.04-1.21], P = 2.13 × 10-3 ), rs835487 in CHST11 (OR 0.93 [95% CI 0.85-0.99], P = 0.03), and rs8044769 in FTO (OR 1.10 [95% CI 1.03-1.19], P = 6.13 × 10-3 ). CONCLUSION: These findings provide suggestive evidence of a novel knee OA locus and confirm previously reported associations in GDF5, CHST11, and FTO.


Subject(s)
Genome-Wide Association Study , Osteoarthritis, Knee/genetics , Aged , Arthrography , Case-Control Studies , Female , Humans , Male , Middle Aged , North America , Osteoarthritis, Knee/diagnostic imaging , White People
7.
Cancer ; 121(20): 3684-91, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26108676

ABSTRACT

BACKGROUND: Investigations of folate-mediated one-carbon metabolism (FOCM) genes and gene-nutrient interactions with respect to colorectal cancer (CRC) risk are limited to candidate polymorphisms and dietary folate. This study comprehensively investigated associations between genetic variants in FOCM and CRC risk and whether the FOCM nutrient status modified these associations. METHODS: Two hundred eighty-eight candidate and tagging single-nucleotide polymorphisms (SNPs) in 30 FOCM genes were genotyped for 821 incident CRC case-control matched pairs in the Women's Health Initiative Observational Study cohort. FOCM biomarkers (red blood cell [RBC] folate, plasma folate, pyridoxal-5'-phosphate [PLP], vitamin B12, and homocysteine) and self-reported alcohol consumption were measured at the baseline. Conditional logistic regression was implemented; effect modification was examined on the basis of known enzyme-nutrient relations. RESULTS: Statistically significant associations were observed between CRC risk and functionally defined candidate SNPs of methylenetetrahydrofolate dehydrogenase 1 (MTHFD1; K134R), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR; P450R), and PR domain containing 2 with ZNF domain (PRDM2; S450N) and a literature candidate SNP of thymidylate synthase (TYMS; g.676789A>T; nominal P < .05). In addition, suggestive associations were noted for tagging SNPs in cystathionine-ß-synthase (CBS), dihydrofolate reductase (DHFR), DNA (cytosine-5-)-methyltransferase 3ß (DNMT3B), methionine adenosyltransferase I α (MAT1A), MTHFD1, and MTRR (nominal P < .05; adjusted P, not significant). Significant interactions between nutrient biomarkers and candidate polymorphisms were observed for 1) plasma/RBC folate and folate hydrolase 1 (FOLH1), paraoxonase 1 (PON1), transcobalamin II (TCN2), DNMT1, and DNMT3B; 2) plasma PLP and TYMS TS3; 3) plasma B12 and betaine-homocysteine S-methyltransferase 2 (BHMT2); and 4) homocysteine and methylenetetrahydrofolate reductase (MTHFR) and alanyl-transfer RNA synthetase (AARS). CONCLUSIONS: Genetic variants in FOCM genes are associated with CRC risk among postmenopausal women. FOCM nutrients continue to emerge as effect modifiers of genetic influences on CRC risk.


Subject(s)
Colorectal Neoplasms/genetics , Folic Acid/metabolism , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Vitamin B Complex/metabolism , Aged , Biomarkers/metabolism , Case-Control Studies , Colorectal Neoplasms/metabolism , DNA-Binding Proteins/genetics , Female , Ferredoxin-NADP Reductase/genetics , Histone-Lysine N-Methyltransferase/genetics , Humans , Logistic Models , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Middle Aged , Minor Histocompatibility Antigens , Nuclear Proteins/genetics , Postmenopause , Risk Assessment , Transcription Factors/genetics
8.
Int J Epidemiol ; 44(2): 662-72, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25997436

ABSTRACT

BACKGROUND: For men and women, taller height is associated with increased risk of all cancers combined. For colorectal cancer (CRC), it is unclear whether the differential association of height by sex is real or is due to confounding or bias inherent in observational studies. We performed a Mendelian randomization study to examine the association between height and CRC risk. METHODS: To minimize confounding and bias, we derived a weighted genetic risk score predicting height (using 696 genetic variants associated with height) in 10,226 CRC cases and 10,286 controls. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for associations between height, genetically predicted height and CRC. RESULTS: Using conventional methods, increased height (per 10-cm increment) was associated with increased CRC risk (OR = 1.08, 95% CI = 1.02-1.15). In sex-specific analyses, height was associated with CRC risk for women (OR = 1.15, 95% CI = 1.05-1.26), but not men (OR = 0.98, 95% CI = 0.92-1.05). Consistent with these results, carrying greater numbers of (weighted) height-increasing alleles (per 1-unit increase) was associated with higher CRC risk for women and men combined (OR = 1.07, 95% CI = 1.01-1.14) and for women (OR = 1.09, 95% CI = .01-1.19). There was weaker evidence of an association for men (OR = 1.05, 95% CI = 0.96-1.15). CONCLUSION: We provide evidence for a causal association between height and CRC for women. The CRC-height association for men remains unclear and warrants further investigation in other large studies.


Subject(s)
Body Height/genetics , Colonic Neoplasms/genetics , Rectal Neoplasms/genetics , Aged , Case-Control Studies , Female , Humans , Male , Mendelian Randomization Analysis , Middle Aged , Risk Factors , Sex Distribution
9.
Cancer Epidemiol Biomarkers Prev ; 24(7): 1024-31, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25976416

ABSTRACT

BACKGROUND: High body mass index (BMI) is consistently linked to increased risk of colorectal cancer for men, whereas the association is less clear for women. As risk estimates from observational studies may be biased and/or confounded, we conducted a Mendelian randomization study to estimate the causal association between BMI and colorectal cancer. METHODS: We used data from 10,226 colorectal cancer cases and 10,286 controls of European ancestry. The Mendelian randomization analysis used a weighted genetic risk score, derived from 77 genome-wide association study-identified variants associated with higher BMI, as an instrumental variable (IV). We compared the IV odds ratio (IV-OR) with the OR obtained using a conventional covariate-adjusted analysis. RESULTS: Individuals carrying greater numbers of BMI-increasing alleles had higher colorectal cancer risk [per weighted allele OR, 1.31; 95% confidence interval (CI), 1.10-1.57]. Our IV estimation results support the hypothesis that genetically influenced BMI is directly associated with risk for colorectal cancer (IV-OR per 5 kg/m(2), 1.50; 95% CI, 1.13-2.01). In the sex-specific IV analyses higher BMI was associated with higher risk of colorectal cancer among women (IV-OR per 5 kg/m(2), 1.82; 95% CI, 1.26-2.61). For men, genetically influenced BMI was not associated with colorectal cancer (IV-OR per 5 kg/m(2), 1.18; 95% CI, 0.73-1.92). CONCLUSIONS: High BMI was associated with increased colorectal cancer risk for women. Whether abdominal obesity, rather than overall obesity, is a more important risk factor for men requires further investigation. IMPACT: Overall, conventional epidemiologic and Mendelian randomization studies suggest a strong association between obesity and the risk of colorectal cancer.


Subject(s)
Body Mass Index , Colorectal Neoplasms/epidemiology , Mendelian Randomization Analysis/methods , Obesity/complications , Colorectal Neoplasms/etiology , Colorectal Neoplasms/genetics , Europe/epidemiology , Female , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Obesity/epidemiology , Obesity/genetics , Odds Ratio , Risk Factors
10.
J Bone Miner Res ; 29(6): 1373-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24339167

ABSTRACT

Osteoarthritis (OA) risk is widely recognized to be heritable but few loci have been identified. Observational studies have identified higher systemic bone mineral density (BMD) to be associated with an increased risk of radiographic knee osteoarthritis. With this in mind, we sought to evaluate whether well-established genetic loci for variance in BMD are associated with risk for radiographic OA in the Osteoarthritis Initiative (OAI) and the Johnston County Osteoarthritis (JoCo) Project. Cases had at least one knee with definite radiographic OA, defined as the presence of definite osteophytes with or without joint space narrowing (Kellgren-Lawrence [KL] grade ≥ 2) and controls were absent for definite radiographic OA in both knees (KL grade ≤ 1 bilaterally). There were 2014 and 658 Caucasian cases, respectively, in the OAI and JoCo Studies, and 953 and 823 controls. Single nucleotide polymorphisms (SNPs) were identified for association analysis from the literature. Genotyping was carried out on Illumina 2.5M and 1M arrays in Genetic Components of Knee OA (GeCKO) and JoCo, respectively and imputation was done. Association analyses were carried out separately in each cohort with adjustments for age, body mass index (BMI), and sex, and then parameter estimates were combined across the two cohorts by meta-analysis. We identified four SNPs significantly associated with prevalent radiographic knee OA. The strongest signal (p = 0.0009; OR = 1.22; 95% CI, 1.08-1.37) maps to 12q3, which contains a gene coding for SP7. Additional loci map to 7p14.1 (TXNDC3), 11q13.2 (LRP5), and 11p14.1 (LIN7C). For all four loci the allele associated with higher BMD was associated with higher odds of OA. A BMD risk allele score was not significantly associated with OA risk. This meta-analysis demonstrates that several genomewide association studies (GWAS)-identified BMD SNPs are nominally associated with prevalent radiographic knee OA and further supports the hypothesis that BMD, or its determinants, may be a risk factor contributing to OA development. © 2014 American Society for Bone and Mineral Research.


Subject(s)
Bone Density/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Osteoarthritis, Knee/genetics , Polymorphism, Single Nucleotide/genetics , Aged , Female , Humans , Male , Meta-Analysis as Topic , Middle Aged , Risk Factors
11.
Menopause ; 21(4): 415-20, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23880798

ABSTRACT

OBJECTIVE: Sex steroid hormones play a role in colorectal cancer (CRC) development, but little is known about their influence on tumor progression and metastasis. Because catechol-O-methyltransferase (COMT; 22q11.21) activity is an important component of estrogen-mediated carcinogenesis, we hypothesized that germline variation in COMT may be associated with CRC survival. METHODS: We identified 10 single nucleotide polymorphisms that tagged variation across two isoforms of COMT in 2,458 women with CRC from the Nurses' Health Study, Postmenopausal Hormones Supplementary Study to the Colon Cancer Family Registry, VITamins And Lifestyle Study, and Women's Health Initiative. All four studies participated in the Genetics and Epidemiology of Colorectal Cancer Consortium. RESULTS: During a median follow-up of 7 years across all studies, there were 799 deaths, including 566 deaths from CRC. Based on multiple comparisons, no associations between single nucleotide polymorphisms and CRC-specific or overall survival reached statistical significance, including the well-characterized Val108/158Met polymorphism (rs4680; CRC-specific survival: hazard ratio per minor allele, 1.04; 95% CI, 0.92-1.17; overall survival: hazard ratio per minor allele, 1.01; 95% CI, 0.90-1.14). CONCLUSIONS: In this large study of women with CRC, we find no evidence that common inherited variation in COMT is associated with survival time after diagnosis.


Subject(s)
Catechol O-Methyltransferase/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Polymorphism, Single Nucleotide/genetics , Postmenopause , Aged , Female , Genotype , Germ-Line Mutation , Humans , Middle Aged , Survival Rate , Women's Health
12.
Gut ; 63(5): 800-7, 2014 May.
Article in English | MEDLINE | ID: mdl-23935004

ABSTRACT

OBJECTIVE: Genome-wide association studies have identified a large number of single nucleotide polymorphisms (SNPs) associated with a wide array of cancer sites. Several of these variants demonstrate associations with multiple cancers, suggesting pleiotropic effects and shared biological mechanisms across some cancers. We hypothesised that SNPs previously associated with other cancers may additionally be associated with colorectal cancer. In a large-scale study, we examined 171 SNPs previously associated with 18 different cancers for their associations with colorectal cancer. DESIGN: We examined 13 338 colorectal cancer cases and 40 967 controls from three consortia: Population Architecture using Genomics and Epidemiology (PAGE), Genetic Epidemiology of Colorectal Cancer (GECCO), and the Colon Cancer Family Registry (CCFR). Study-specific logistic regression results, adjusted for age, sex, principal components of genetic ancestry, and/or study specific factors (as relevant) were combined using fixed-effect meta-analyses to evaluate the association between each SNP and colorectal cancer risk. A Bonferroni-corrected p value of 2.92×10(-4) was used to determine statistical significance of the associations. RESULTS: Two correlated SNPs--rs10090154 and rs4242382--in Region 1 of chromosome 8q24, a prostate cancer susceptibility region, demonstrated statistically significant associations with colorectal cancer risk. The most significant association was observed with rs4242382 (meta-analysis OR=1.12; 95% CI 1.07 to 1.18; p=1.74×10(-5)), which also demonstrated similar associations across racial/ethnic populations and anatomical sub-sites. CONCLUSIONS: This is the first study to clearly demonstrate Region 1 of chromosome 8q24 as a susceptibility locus for colorectal cancer; thus, adding colorectal cancer to the list of cancer sites linked to this particular multicancer risk region at 8q24.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Pleiotropy , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Aged , Chromosomes, Human, Pair 8 , Female , Genetic Markers , Genome-Wide Association Study , Genotyping Techniques , Humans , Logistic Models , Male , Middle Aged , Principal Component Analysis , Registries , Risk Factors
13.
Hum Genet ; 132(12): 1427-31, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24100633

ABSTRACT

Genome-wide association studies (GWAS) have identified many variants that influence high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and/or triglycerides. However, environmental modifiers, such as smoking, of these known genotype-phenotype associations are just recently emerging in the literature. We have tested for interactions between smoking and 49 GWAS-identified variants in over 41,000 racially/ethnically diverse samples with lipid levels from the Population Architecture Using Genomics and Epidemiology (PAGE) study. Despite their biological plausibility, we were unable to detect significant SNP × smoking interactions.


Subject(s)
Ethnicity/genetics , Gene-Environment Interaction , Genome-Wide Association Study/statistics & numerical data , Lipid Metabolism/genetics , Polymorphism, Single Nucleotide , Smoking/genetics , Cholesterol, HDL/metabolism , Cholesterol, LDL/metabolism , Cohort Studies , Female , Gene Frequency , Genetics, Population , Humans , Male , Prevalence , Smoking/epidemiology , Smoking/ethnology , Smoking/metabolism , Triglycerides/metabolism , Young Adult
14.
PLoS Biol ; 11(9): e1001661, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24068893

ABSTRACT

The vast majority of genome-wide association study (GWAS) findings reported to date are from populations with European Ancestry (EA), and it is not yet clear how broadly the genetic associations described will generalize to populations of diverse ancestry. The Population Architecture Using Genomics and Epidemiology (PAGE) study is a consortium of multi-ancestry, population-based studies formed with the objective of refining our understanding of the genetic architecture of common traits emerging from GWAS. In the present analysis of five common diseases and traits, including body mass index, type 2 diabetes, and lipid levels, we compare direction and magnitude of effects for GWAS-identified variants in multiple non-EA populations against EA findings. We demonstrate that, in all populations analyzed, a significant majority of GWAS-identified variants have allelic associations in the same direction as in EA, with none showing a statistically significant effect in the opposite direction, after adjustment for multiple testing. However, 25% of tagSNPs identified in EA GWAS have significantly different effect sizes in at least one non-EA population, and these differential effects were most frequent in African Americans where all differential effects were diluted toward the null. We demonstrate that differential LD between tagSNPs and functional variants within populations contributes significantly to dilute effect sizes in this population. Although most variants identified from GWAS in EA populations generalize to all non-EA populations assessed, genetic models derived from GWAS findings in EA may generate spurious results in non-EA populations due to differential effect sizes. Regardless of the origin of the differential effects, caution should be exercised in applying any genetic risk prediction model based on tagSNPs outside of the ancestry group in which it was derived. Models based directly on functional variation may generalize more robustly, but the identification of functional variants remains challenging.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Metagenomics/methods , Polymorphism, Single Nucleotide/genetics , Black or African American/genetics , Asian/genetics , Body Mass Index , Diabetes Mellitus, Type 2/genetics , Gene Frequency , Genetic Variation , Hispanic or Latino/genetics , Humans , Indians, North American/genetics , Lipids/blood , Lipids/genetics , Native Hawaiian or Other Pacific Islander/genetics , White People/genetics
15.
Ann Hum Genet ; 77(5): 416-25, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23808484

ABSTRACT

Numerous common genetic variants that influence plasma high-density lipoprotein cholesterol, low-density lipoprotein cholesterol (LDL-C), and triglyceride distributions have been identified via genome-wide association studies (GWAS). However, whether or not these associations are age-dependent has largely been overlooked. We conducted an association study and meta-analysis in more than 22,000 European Americans between 49 previously identified GWAS variants and the three lipid traits, stratified by age (males: <50 or ≥50 years of age; females: pre- or postmenopausal). For each variant, a test of heterogeneity was performed between the two age strata and significant Phet values were used as evidence of age-specific genetic effects. We identified seven associations in females and eight in males that displayed suggestive heterogeneity by age (Phet < 0.05). The association between rs174547 (FADS1) and LDL-C in males displayed the most evidence for heterogeneity between age groups (Phet = 1.74E-03, I(2) = 89.8), with a significant association in older males (P = 1.39E-06) but not younger males (P = 0.99). However, none of the suggestive modifying effects survived adjustment for multiple testing, highlighting the challenges of identifying modifiers of modest SNP-trait associations despite large sample sizes.


Subject(s)
Genome-Wide Association Study , Lipids/blood , Quantitative Trait Loci , Quantitative Trait, Heritable , Adult , Aged , Delta-5 Fatty Acid Desaturase , Female , Genetic Association Studies , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , White People/genetics
16.
Cancer Causes Control ; 24(8): 1605-14, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23775025

ABSTRACT

PURPOSE: Women who receive chemotherapy for a first primary breast cancer have been observed to have a reduced risk of contralateral breast cancer (CBC), however, whether the genetic profile of a patient modifies this protective effect is currently not understood. The purpose of this study is to investigate the impact of germline genetic variation in genes coding for drug metabolizing enzymes, transporters, and targets on the association between chemotherapy and risk of CBC. METHODS: From the population-based Women's Environment Cancer and Radiation Epidemiology (WECARE) Study, we included 636 Caucasian women with CBC (cases) and 1,224 women with unilateral breast cancer (controls). The association between common chemotherapeutic regimens, CMF and FAC/FEC, and risk of CBC stratified by genotype of 180 single nucleotide polymorphisms in 14 genes selected for their known involvement in metabolism, action, and transport of breast cancer chemotherapeutic agents, were determined using conditional logistic regression. RESULTS: CMF (RR = 0.5, 95 % CI 0.4, 0.7) and FAC/FEC (RR = 0.7, 95 % CI 0.4, 1.0) are associated with lower CBC risk relative to no chemotherapy in multivariable-adjusted models. Here we show that genotype of selected genes involved in the metabolism and uptake of these therapeutic agents does not significantly alter the protective effect of either CMF or FAC/FEC on risk of CBC. CONCLUSION: The results of this study show that germline genetic variation in selected gene does not significantly alter the protective effect of CMF, FAC, and FEC on risk of CBC.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Breast Neoplasms/etiology , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Pharmacogenetics , Polymorphism, Single Nucleotide/genetics , Adult , Aged , Breast Neoplasms/drug therapy , Breast Neoplasms/epidemiology , Case-Control Studies , Cytochrome P-450 Enzyme System/genetics , DNA, Neoplasm/genetics , Female , Follow-Up Studies , Genome-Wide Association Study , Genotype , Humans , Membrane Transport Proteins/genetics , Methyltransferases/genetics , Middle Aged , Polymerase Chain Reaction , Prognosis , Registries , Risk Factors , United States/epidemiology , Young Adult
17.
Cancer Epidemiol Biomarkers Prev ; 22(7): 1239-51, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23637064

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) in densely affected families without Lynch Syndrome may be due to mutations in undiscovered genetic loci. Familial linkage analyses have yielded disparate results; the use of exome sequencing in coding regions may identify novel segregating variants. METHODS: We completed exome sequencing on 40 affected cases from 16 multicase pedigrees to identify novel loci. Variants shared among all sequenced cases within each family were identified and filtered to exclude common variants and single-nucleotide variants (SNV) predicted to be benign. RESULTS: We identified 32 nonsense or splice-site SNVs, 375 missense SNVs, 1,394 synonymous or noncoding SNVs, and 50 indels in the 16 families. Of particular interest are two validated and replicated missense variants in CENPE and KIF23, which are both located within previously reported CRC linkage regions, on chromosomes 1 and 15, respectively. CONCLUSIONS: Whole-exome sequencing identified DNA variants in multiple genes. Additional sequencing of these genes in additional samples will further elucidate the role of variants in these regions in CRC susceptibility. IMPACT: Exome sequencing of familial CRC cases can identify novel rare variants that may influence disease risk.


Subject(s)
Colorectal Neoplasms/genetics , Exome , High-Throughput Nucleotide Sequencing/methods , Adult , Aged , Aged, 80 and over , Computational Biology , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Registries
18.
BMC Genet ; 14: 33, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23634756

ABSTRACT

BACKGROUND: High-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels are influenced by both genes and the environment. Genome-wide association studies (GWAS) have identified ~100 common genetic variants associated with HDL-C, LDL-C, and/or TG levels, mostly in populations of European descent, but little is known about the modifiers of these associations. Here, we investigated whether GWAS-identified SNPs for lipid traits exhibited heterogeneity by sex in the Population Architecture using Genomics and Epidemiology (PAGE) study. RESULTS: A sex-stratified meta-analysis was performed for 49 GWAS-identified SNPs for fasting HDL-C, LDL-C, and ln(TG) levels among adults self-identified as European American (25,013). Heterogeneity by sex was established when phet < 0.001. There was evidence for heterogeneity by sex for two SNPs for ln(TG) in the APOA1/C3/A4/A5/BUD13 gene cluster: rs28927680 (p(het) = 7.4 x 10(-7)) and rs3135506 (p(het) = 4.3 x 10(-4)one SNP in PLTP for HDL levels (rs7679; p(het) = 9.9 x 10(-4)), and one in HMGCR for LDL levels (rs12654264; p(het) = 3.1 x 10(-5)). We replicated heterogeneity by sex in five of seventeen loci previously reported by genome-wide studies (binomial p = 0.0009). We also present results for other racial/ethnic groups in the supplementary materials, to provide a resource for future meta-analyses. CONCLUSIONS: We provide further evidence for sex-specific effects of SNPs in the APOA1/C3/A4/A5/BUD13 gene cluster, PLTP, and HMGCR on fasting triglyceride levels in European Americans from the PAGE study. Our findings emphasize the need for considering context-specific effects when interpreting genetic associations emerging from GWAS, and also highlight the difficulties in replicating interaction effects across studies and across racial/ethnic groups.


Subject(s)
Genome, Human , Lipids/genetics , Female , Genetic Heterogeneity , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide , Population Groups/genetics
19.
Int J Mol Epidemiol Genet ; 4(1): 35-48, 2013.
Article in English | MEDLINE | ID: mdl-23565321

ABSTRACT

Tamoxifen has been shown to greatly reduce risk of recurrence and contralateral breast cancer (CBC). Still, second primary contralateral breast cancer is the most common malignancy to follow a first primary breast cancer. Genetic variants in CYP2D6 and other drug-metabolizing enzymes that alter the metabolism of tamoxifen may be associated with CBC risk in women who receive the drug. This is the first study to investigate the impact of this variation on risk of CBC in women who receive tamoxifen. From the population-based Women's Environment Cancer and Radiation Epidemiology (WECARE) Study, we included 624 Caucasian women with CBC (cases) and 1,199 women with unilateral breast cancer (controls) with complete information on tumor characteristics and treatment. Conditional logistic regression was used to assess the risk of CBC associated with 112 single nucleotide polymorphisms (SNPs) in 8 genes involved in the metabolism of tamoxifen among tamoxifen users and non-users. After adjustment for multiple testing, no significant association was observed between any of the genotyped variants and CBC risk in either tamoxifen users or non-users. These results suggest that when using a tagSNP approach, common variants in selected genes involved in the metabolism of tamoxifen are not associated with risk of CBC among women treated with the drug.

20.
Genes Chromosomes Cancer ; 52(5): 437-49, 2013 May.
Article in English | MEDLINE | ID: mdl-23404351

ABSTRACT

Arachidonate lipoxygenase (ALOX) enzymes metabolize arachidonic acid to generate potent inflammatory mediators and play an important role in inflammation-associated diseases. We investigated associations between colorectal cancer risk and polymorphisms in ALOX5, FLAP, ALOX12, and ALOX15, and their interactions with nonsteroidal anti-inflammatory drug (NSAID) use. We genotyped fifty tagSNPs, one candidate SNP, and two functional promoter variable nucleotide tandem repeat (VNTR) polymorphisms in three US population-based case-control studies of colon cancer (1,424 cases/1,780 controls), rectal cancer (583 cases/775 controls), and colorectal adenomas (485 cases/578 controls). Individuals with variant genotypes of the ALOX5 VNTR had a decreased risk of rectal cancer, with the strongest association seen for individuals with one or more alleles of >5 repeats (wild type = 5, OR>5/≥5 = 0.42, 95% CI 0.20-0.92; P = 0.01). Four SNPs in FLAP (rs17239025), ALOX12 (rs2073438), and ALOX15 (rs4796535 and rs2619112) were associated with rectal cancer risk at P ≤ 0.05. One SNP in FLAP (rs12429692) was associated with adenoma risk. A false discovery rate (FDR) was applied to account for false positives due to multiple testing; the ALOX15 associations were noteworthy at 25% FDR. Colorectal neoplasia risk appeared to be modified by NSAID use in individuals with variant alleles in FLAP and ALOX15. One noteworthy interaction (25% FDR) was observed for rectal cancer. Genetic variability in ALOXs may affect risk of colorectal neoplasia, particularly for rectal cancer. Additionally, genetic variability in FLAP and ALOX15 may modify the protective effect of NSAID use against colorectal neoplasia.


Subject(s)
Adenoma/genetics , Colorectal Neoplasms/genetics , Polymorphism, Single Nucleotide , 5-Lipoxygenase-Activating Proteins/genetics , Adenoma/enzymology , Adenoma/prevention & control , Adult , Aged , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anticarcinogenic Agents/therapeutic use , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/genetics , Case-Control Studies , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/prevention & control , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Risk , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...