Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 341: 122810, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37925008

ABSTRACT

Detecting and quantifying subsurface leaks remains a challenge due to the complex nature and extent of belowground leak scenarios. To address these scenarios, monitoring and evaluating changes in gas leakage behavior over space and time are crucial for ensuring safe and efficient responses to known or potential gas leaks. This study demonstrates the capability of linking environmental and gas concentration data obtained using a low-cost, near real-time methane (CH4) detector network and an inverse gas migration model to capture and quantify non-steady state belowground natural gas (NG) leaks. The Estimating Surface Concentration Above Pipeline Emission (ESCAPE) model was modified to incorporate the impact of soil properties on gas migration. Field-scale controlled NG experiments with leakage rates ranging from 37 to 121 g/h indicate that elevated belowground near-surface (BNS) gas concentrations persist long before elevated surface concentrations are observed. On average, BNS CH4 concentrations were 20%-486% higher than surface CH4 concentrations within the monitoring radius of 4 m from the leak location. An increase in the BNS CH4 concentration was observed within 3 h as the leak rate increased from 37 to 89 g/h. However, due to the atmospheric fluctuations, any changes in surface CH4 concentrations could not be confirmed within this period. The plume area of the BNS CH4 extended approximately two times farther than that of the surface CH4 as the gas leak rate increased from 37 to 121 g/h. The estimated NG leak rates by the modified ESCAPE model agreed well with the experimental NG leak rates (m = 0.99 and R2 = 0.77), demonstrating that including soil characteristics and BNS CH4 measurements can advance estimations of non-steady NG leak rates in low and moderate NG leak rate scenarios. The CH4 detector network and model show potential as an innovative tool to improve operators' risk assessment and NG leakage response.


Subject(s)
Air Pollutants , Natural Gas , Natural Gas/analysis , Air Pollutants/analysis , Methane/analysis , Soil
2.
Environ Sci Technol ; 49(15): 9374-83, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26195284

ABSTRACT

The recent growth in production and utilization of natural gas offers potential climate benefits, but those benefits depend on lifecycle emissions of methane, the primary component of natural gas and a potent greenhouse gas. This study estimates methane emissions from the transmission and storage (T&S) sector of the United States natural gas industry using new data collected during 2012, including 2,292 onsite measurements, additional emissions data from 677 facilities and activity data from 922 facilities. The largest emission sources were fugitive emissions from certain compressor-related equipment and "super-emitter" facilities. We estimate total methane emissions from the T&S sector at 1,503 [1,220 to 1,950] Gg/yr (95% confidence interval) compared to the 2012 Environmental Protection Agency's Greenhouse Gas Inventory (GHGI) estimate of 2,071 [1,680 to 2,690] Gg/yr. While the overlap in confidence intervals indicates that the difference is not statistically significant, this is the result of several significant, but offsetting, factors. Factors which reduce the study estimate include a lower estimated facility count, a shift away from engines toward lower-emitting turbine and electric compressor drivers, and reductions in the usage of gas-driven pneumatic devices. Factors that increase the study estimate relative to the GHGI include updated emission rates in certain emission categories and explicit treatment of skewed emissions at both component and facility levels. For T&S stations that are required to report to the EPA's Greenhouse Gas Reporting Program (GHGRP), this study estimates total emissions to be 260% [215% to 330%] of the reportable emissions for these stations, primarily due to the inclusion of emission sources that are not reported under the GHGRP rules, updated emission factors, and super-emitter emissions.


Subject(s)
Air Pollutants/analysis , Methane/analysis , Natural Gas/analysis , Greenhouse Effect , Models, Theoretical , United States
SELECTION OF CITATIONS
SEARCH DETAIL