Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
bioRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38076892

ABSTRACT

αß T-cell receptors (TCRs) recognize aberrant peptides bound to major histocompatibility complex molecules (pMHCs) on unhealthy cells, amplifying specificity and sensitivity through physical load placed on the TCR-pMHC bond during immunosurveillance. To understand this mechanobiology, TCRs stimulated by abundantly and sparsely arrayed epitopes (NP 366-374 /D b and PA 224-233 /D b , respectively) following in vivo influenza A virus infection were studied with optical tweezers. While certain NP repertoire CD8 T lymphocytes require many ligands for activation, others are digital, needing just few. Conversely, all PA TCRs perform digitally, exhibiting pronounced bond lifetime increases through sustained, energizing volleys of structural transitioning. Optimal digital performance is superior in vivo, correlating with ERK phosphorylation, CD3 loss, and activation marker upregulation in vitro . Given neoantigen array paucity, digital TCRs are likely critical for immunotherapies. One Sentence Summary: Quality of ligand recognition in a T-cell repertoire is revealed through application of physical load on clonal T-cell receptor (TCR)-pMHC bonds.

2.
Nat Cancer ; 4(7): 1016-1035, 2023 07.
Article in English | MEDLINE | ID: mdl-37430060

ABSTRACT

Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is treated with ALK tyrosine kinase inhibitors (TKIs), but the lack of activity of immune checkpoint inhibitors (ICIs) is poorly understood. Here, we identified immunogenic ALK peptides to show that ICIs induced rejection of ALK+ tumors in the flank but not in the lung. A single-peptide vaccination restored priming of ALK-specific CD8+ T cells, eradicated lung tumors in combination with ALK TKIs and prevented metastatic dissemination of tumors to the brain. The poor response of ALK+ NSCLC to ICIs was due to ineffective CD8+ T cell priming against ALK antigens and is circumvented through specific vaccination. Finally, we identified human ALK peptides displayed by HLA-A*02:01 and HLA-B*07:02 molecules. These peptides were immunogenic in HLA-transgenic mice and were recognized by CD8+ T cells from individuals with NSCLC, paving the way for the development of a clinical vaccine to treat ALK+ NSCLC.


Subject(s)
Cancer Vaccines , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Anaplastic Lymphoma Kinase/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Cancer Vaccines/therapeutic use , Receptor Protein-Tyrosine Kinases/therapeutic use , CD8-Positive T-Lymphocytes/pathology , Vaccines, Subunit/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/therapeutic use , Mice, Transgenic , Vaccination
3.
Nature ; 613(7944): 565-574, 2023 01.
Article in English | MEDLINE | ID: mdl-36410718

ABSTRACT

Programming T cells to distinguish self from non-self is a vital, multi-step process that occurs in the thymus1-4. Signalling through the pre-T cell receptor (preTCR), a CD3-associated heterodimer comprising an invariant pTα chain and a clone-specific ß chain, is a critical early checkpoint in thymocyte development within the αß T cell lineage5,6. PreTCRs arrayed on CD4-CD8- double-negative thymocytes ligate peptides bound to major histocompatibility complex molecules (pMHC) on thymic stroma, similar to αß T cell receptors that appear on CD4+CD8+ double-positive thymocytes, but via a different molecular docking strategy7-10. Here we show the consequences of these distinct interactions for thymocyte progression using synchronized fetal thymic progenitor cultures that differ in the presence or absence of pMHC on support stroma, and single-cell transcriptomes at key thymocyte developmental transitions. Although major histocompatibility complex (MHC)-negative stroma fosters αß T cell differentiation, the absence of preTCR-pMHC interactions leads to deviant thymocyte transcriptional programming associated with dedifferentiation. Highly proliferative double-negative and double-positive thymocyte subsets emerge, with antecedent characteristics of T cell lymphoblastic and myeloid malignancies. Compensatory upregulation of diverse MHC class Ib proteins in B2m/H2-Ab1 MHC-knockout mice partially safeguards in vivo thymocyte progression, although disseminated double-positive thymic tumours may develop with ageing. Thus, as well as promoting ß chain repertoire broadening for subsequent αß T cell receptor utilization, preTCR-pMHC interactions limit cellular plasticity to facilitate normal thymocyte differentiation and proliferation that, if absent, introduce developmental vulnerabilities.


Subject(s)
Cell Dedifferentiation , Histocompatibility Antigens Class I , Receptors, Antigen, T-Cell , Thymocytes , Animals , Mice , Mice, Knockout , Molecular Docking Simulation , Peptides/immunology , Peptides/metabolism , Thymocytes/cytology , Thymocytes/immunology , Thymus Gland/cytology , Thymus Gland/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism
4.
Cancers (Basel) ; 14(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35565202

ABSTRACT

Dipeptidyl peptidase IV (DPP-IV, CD26) is frequently dysregulated in cancer and plays an important role in regulating multiple bioactive peptides with the potential to influence cancer progression and the recruitment of immune cells. Therefore, it represents a potential contributing factor to cancer pathogenesis and an attractive therapeutic target. Specific DPP-IV inhibitors (gliptins) are currently used in patients with type 2 diabetes mellitus to promote insulin secretion by prolonging the activity of the incretins glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Nevertheless, the modulation of the bioavailability and function of other DPP-IV substrates, including chemokines, raises the possibility that the use of these orally administered drugs with favorable side-effect profiles might be extended beyond the treatment of hyperglycemia. In this review, we critically examine the possible utilization of DPP-IV inhibition in cancer prevention and various aspects of cancer treatment and discuss the potential perils associated with the inhibition of DPP-IV in cancer. The current literature is summarized regarding the possible chemopreventive and cytotoxic effects of gliptins and their potential utility in modulating the anti-tumor immune response, enhancing hematopoietic stem cell transplantation, preventing acute graft-versus-host disease, and alleviating the side-effects of conventional anti-tumor treatments.

5.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: mdl-34172580

ABSTRACT

High-acuity αßT cell receptor (TCR) recognition of peptides bound to major histocompatibility complex molecules (pMHCs) requires mechanosensing, a process whereby piconewton (pN) bioforces exert physical load on αßTCR-pMHC bonds to dynamically alter their lifetimes and foster digital sensitivity cellular signaling. While mechanotransduction is operative for both αßTCRs and pre-TCRs within the αßT lineage, its role in γδT cells is unknown. Here, we show that the human DP10.7 γδTCR specific for the sulfoglycolipid sulfatide bound to CD1d only sustains a significant load and undergoes force-induced structural transitions when the binding interface-distal γδ constant domain (C) module is replaced with that of αß. The chimeric γδ-αßTCR also signals more robustly than does the wild-type (WT) γδTCR, as revealed by RNA-sequencing (RNA-seq) analysis of TCR-transduced Rag2-/- thymocytes, consistent with structural, single-molecule, and molecular dynamics studies reflective of γδTCRs as mediating recognition via a more canonical immunoglobulin-like receptor interaction. Absence of robust, force-related catch bonds, as well as γδTCR structural transitions, implies that γδT cells do not use mechanosensing for ligand recognition. This distinction is consonant with the fact that their innate-type ligands, including markers of cellular stress, are expressed at a high copy number relative to the sparse pMHC ligands of αßT cells arrayed on activating target cells. We posit that mechanosensing emerged over ∼200 million years of vertebrate evolution to fulfill indispensable adaptive immune recognition requirements for pMHC in the αßT cell lineage that are unnecessary for the γδT cell lineage mechanism of non-pMHC ligand detection.


Subject(s)
Mechanotransduction, Cellular , Receptors, Antigen, T-Cell, gamma-delta/chemistry , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Amino Acid Sequence , Animals , Gene Expression Profiling , Humans , Ligands , Mice , Protein Domains , Protein Stability , Protein Structure, Secondary , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Signal Transduction , Single Molecule Imaging , T-Lymphocytes/metabolism , Thymocytes/metabolism , Thymus Gland/metabolism , Transcriptome/genetics
6.
Cancer Discov ; 11(8): 1952-1969, 2021 08.
Article in English | MEDLINE | ID: mdl-33707236

ABSTRACT

Small cell lung carcinoma (SCLC) is highly mutated, yet durable response to immune checkpoint blockade (ICB) is rare. SCLC also exhibits cellular plasticity, which could influence its immunobiology. Here we discover that a distinct subset of SCLC uniquely upregulates MHC I, enriching for durable ICB benefit. In vitro modeling confirms epigenetic recovery of MHC I in SCLC following loss of neuroendocrine differentiation, which tracks with derepression of STING. Transient EZH2 inhibition expands these nonneuroendocrine cells, which display intrinsic innate immune signaling and basally restored antigen presentation. Consistent with these findings, murine nonneuroendocrine SCLC tumors are rejected in a syngeneic model, with clonal expansion of immunodominant effector CD8 T cells. Therapeutically, EZH2 inhibition followed by STING agonism enhances T-cell recognition and rejection of SCLC in mice. Together, these data identify MHC I as a novel biomarker of SCLC immune responsiveness and suggest novel immunotherapeutic approaches to co-opt SCLC's intrinsic immunogenicity. SIGNIFICANCE: SCLC is poorly immunogenic, displaying modest ICB responsiveness with rare durable activity. In profiling its plasticity, we uncover intrinsically immunogenic MHC Ihi subpopulations of nonneuroendocrine SCLC associated with durable ICB benefit. We also find that combined EZH2 inhibition and STING agonism uncovers this cell state, priming cells for immune rejection.This article is highlighted in the In This Issue feature, p. 1861.


Subject(s)
Cell Plasticity , Lung Neoplasms/immunology , Small Cell Lung Carcinoma/immunology , Animals , Cohort Studies , Disease Models, Animal , Electronic Health Records , Humans , Lung Neoplasms/pathology , Mice , Small Cell Lung Carcinoma/pathology
7.
Science ; 371(6525): 181-185, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33335016

ABSTRACT

Self-discrimination, a critical but ill-defined molecular process programmed during thymocyte development, requires myriad pre-T cell receptors (preTCRs) and αßTCRs. Using x-ray crystallography, we show how a preTCR applies the concave ß-sheet surface of its single variable domain (Vß) to "horizontally" grab the protruding MHC α2-helix. By contrast, αßTCRs purpose all six complementarity-determining region (CDR) loops of their paired VαVß module to recognize peptides bound to major histocompatibility complex molecules (pMHCs) in "vertical" head-to-head binding. The preTCR topological fit ensures that CDR3ß reaches the peptide's featured C-terminal segment for pMHC sampling, establishing the subsequent αßTCR canonical docking mode. "Horizontal" docking precludes germline CDR1ß- and CDR2ß-MHC binding to broaden ß-chain repertoire diversification before αßTCR-mediated selection refinement. Thus, one subunit successively attunes the recognition logic of related multicomponent receptors.


Subject(s)
Receptors, Antigen, T-Cell, alpha-beta/chemistry , Thymocytes/immunology , Animals , Crystallography, X-Ray , Humans , Ligands , Major Histocompatibility Complex , Mice , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand
8.
BMC Res Notes ; 13(1): 301, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32580758

ABSTRACT

OBJECTIVE: Neurodegeneration and hair pigmentation alterations in mice occur consequent to aberrations at the Atrn locus coding for the transmembrane form of attractin. Earlier results pointed to a possible involvement in intracellular trafficking/export of secretory vesicles containing proteoglycan. Here we examined kidney and liver, both heavily dependent upon proteoglycan, of attractin-deficient mice to determine whether abnormalities were observed in these tissues. RESULTS: Histological and histochemical analysis to detect glycosylated protein identified a severe loss in attractin-deficient mice of extracellular proteoglycan between kidney tubules in addition to a loss of glycosylated material within the intratubular brush border. In the liver, extracellular matrix material was significantly depleted between hepatocytes together with swollen sinuses and aberrations in the proteoglycan-dependent space of Disse. These results are consistent with a generalized defect in extracellular proteoglycan deposition in Atrn-mutant mice and support previous reports suggesting a role for attractin in the secretory vesicle pathway.


Subject(s)
Exocytosis/physiology , Extracellular Matrix/physiology , Hair Color/genetics , Membrane Proteins/physiology , Neurodegenerative Diseases , Proteoglycans/physiology , Animals , Disease Models, Animal , Kidney/pathology , Liver/pathology , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C3H , Mice, Knockout , Mice, Neurologic Mutants , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology
9.
Commun Biol ; 3(1): 128, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32184441

ABSTRACT

Programmed cell death-1 (PD-1) inhibits T cell responses. This function relies on interaction with SHP-2. PD-1 has one immunoreceptor tyrosine-based inhibitory motif (ITIM) at Y223 and one immunoreceptor tyrosine-based switch motif (ITSM) at Y248. Only ITSM-Y248 is indispensable for PD-1-mediated inhibitory function but how SHP-2 enzymatic activation is mechanistically regulated by one PD-1 phosphotyrosine remains a puzzle. We found that after PD-1 phosphorylation, SHP-2 can bridge phosphorylated ITSM-Y248 residues on two PD-1 molecules via its amino terminal (N)-SH2 and carboxyterminal (C)-SH2 domains forming a PD-1: PD-1 dimer in live cells. The biophysical ability of SHP-2 to interact with two ITSM-pY248 residues was documented by isothermal titration calorimetry. SHP-2 interaction with two ITSM-pY248 phosphopeptides induced robust enzymatic activation. Our results unravel a mechanism of PD-1: SHP-2 interaction that depends only on ITSM-Y248 and explain how a single docking site within the PD-1 cytoplasmic tail can activate SHP-2 and PD-1-mediated inhibitory function.


Subject(s)
Programmed Cell Death 1 Receptor/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , T-Lymphocytes/enzymology , Animals , COS Cells , Chlorocebus aethiops , Enzyme Activation , HEK293 Cells , Humans , Immunoreceptor Tyrosine-Based Activation Motif , Jurkat Cells , Mice, Knockout , Phosphorylation , Programmed Cell Death 1 Receptor/chemistry , Programmed Cell Death 1 Receptor/genetics , Protein Binding , Protein Multimerization , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , src Homology Domains
10.
J Biomol NMR ; 73(6-7): 319-332, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30815789

ABSTRACT

Early studies of T cell structural biology using X-ray crystallography, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) focused on a picture of the αßT cell receptor (αßTCR) component domains and their cognate ligands (peptides bound to MHC molecules, i.e. pMHCs) as static interaction partners. Moving forward requires integrating this corpus of data with dynamic technologies such as NMR, molecular dynamics (MD) simulations and real-time single molecule (SM) studies exemplified by optical tweezers (OT). NMR bridges relevant timescales and provides the potential for an all-atom dynamic description of αßTCR components prior to and during interactions with binding partners. SM techniques have opened up vistas in understanding the non-equilibrium nature of T cell signaling through the introduction of force-mediated binding measurements into the paradigm for T cell function. In this regard, bioforces consequent to T-lineage cell motility are now perceived as placing piconewton (pN)-level loads on single receptor-pMHC bonds to impact structural change and αßT-lineage biology, including peptide discrimination, cellular activation, and developmental progression. We discuss herein essential NMR technologies in illuminating the role of ligand binding in the preT cell receptor (preTCR), the αßTCR developmental precursor, and convergence of NMR, SM and MD data in advancing our comprehension of T cell development. More broadly we review the central hypothesis that the αßTCR is a mechanosensor, fostered by breakthrough NMR-based structural insights. Collectively, elucidating dynamic aspects through the integrative use of NMR, SM, and MD shall advance fundamental appreciation of the mechanism of T cell signaling as well as inform translational efforts in αßTCR and chimeric T cell (CAR-T) immunotherapies and T cell vaccinology.


Subject(s)
Histocompatibility Antigens/chemistry , Nuclear Magnetic Resonance, Biomolecular , Receptors, Antigen, T-Cell/chemistry , Histocompatibility Antigens/metabolism , Humans , Ligands , Mechanotransduction, Cellular , Models, Molecular , Protein Conformation , Receptors, Antigen, T-Cell/metabolism , Structure-Activity Relationship , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
11.
Science ; 363(6426): 499-504, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30705186

ABSTRACT

Adaptive evolution in new or changing environments can be difficult to predict because the functional connections between genotype, phenotype, and fitness are complex. Here, we make these explicit connections by combining field and laboratory experiments in wild mice. We first directly estimate natural selection on pigmentation traits and an underlying pigment locus, Agouti, by using experimental enclosures of mice on different soil colors. Next, we show how a mutation in Agouti associated with survival causes lighter coat color through changes in its protein binding properties. Together, our findings demonstrate how a sequence variant alters phenotype and then reveal the ensuing ecological consequences that drive changes in population allele frequency, thereby illuminating the process of evolution by natural selection.


Subject(s)
Agouti Signaling Protein/genetics , Hair Color/genetics , Peromyscus/genetics , Selection, Genetic , Animals , Gene Frequency , Genotype , Melanins/analysis , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Nebraska , Phenotype , Pigmentation/genetics , Sequence Deletion
12.
Front Immunol ; 10: 2766, 2019.
Article in English | MEDLINE | ID: mdl-31921104

ABSTRACT

Tumor-infiltrating lymphocytes (TIL) are considered enriched for T cells recognizing shared tumor antigens or mutation-derived neoepitopes. We performed exome sequencing and HLA-A*02:01 epitope prediction from tumor cell lines from two HLA-A2-positive melanoma patients whose TIL displayed strong tumor reactivity. The potential neoepitopes were screened for recognition using autologous TIL by immunological assays and presentation on tumor major histocompatibility complex class I (MHC-I) molecules by Poisson detection mass spectrometry (MS). TIL from the patients recognized 5/181 and 3/49 of the predicted neoepitopes, respectively. MS screening detected 3/181 neoepitopes on tumor MHC-I from the first patient but only one was also among those recognized by TIL. Consequently, TIL enriched for neoepitope specificity failed to recognize tumor cells, despite being activated by peptides. For the second patient, only after IFN-γ treatment of the tumor cells was one of 49 predicted neoepitopes detected by MS, and this coincided with recognition by TIL sorted for the same specificity. Importantly, specific T cells could be expanded from patient and donor peripheral blood mononuclear cells (PBMC) for all neoepitopes recognized by TIL and/or detected on tumor MHC-I. In summary, stimulating the appropriate inflammatory environment within tumors may promote neoepitope MHC presentation while expanding T cells in blood may circumvent lack of specific TIL. The discordance in detection between physical and functional methods revealed here can be rationalized and used to improve neoantigen-targeted T cell immunotherapy.


Subject(s)
Epitopes, T-Lymphocyte/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma-Specific Antigens/immunology , Melanoma/immunology , Adult , Aged , Alleles , Antigen Presentation , Cell Line, Tumor , Flow Cytometry , HLA-A2 Antigen/immunology , Histocompatibility Antigens/immunology , Humans , Inflammation/immunology , Male , Mass Spectrometry , Melanoma-Specific Antigens/genetics , Mutation , Peptide Library , Exome Sequencing
13.
Immunity ; 49(5): 829-841.e6, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30389415

ABSTRACT

Initial molecular details of cellular activation following αßT cell antigen receptor (TCR) ligation by peptide-major histocompatibility complexes (pMHC) remain unexplored. We determined the nuclear magnetic resonance (NMR) structure of the TCRα subunit transmembrane (TM) domain revealing a bipartite helix whose segmentation fosters dynamic movement. Positively charged TM residues Arg251 and Lys256 project from opposite faces of the helix, with Lys256 controlling immersion depth. Their modification caused stepwise reduction in TCR associations with CD3ζζ homodimers and CD3εγ plus CD3εδ heterodimers, respectively, leading to an activated transcriptome. Optical tweezers revealed that Arg251 and Lys256 mutations altered αßTCR-pMHC bond lifetimes, while mutations within interacting TCRα connecting peptide and CD3δ CxxC motif juxtamembrane elements selectively attenuated signal transduction. Our findings suggest that mechanical forces applied during pMHC ligation initiate T cell activation via a dissociative mechanism, shifting disposition of those basic sidechains to rearrange TCR complex membrane topology and weaken TCRαß and CD3 associations.


Subject(s)
CD3 Complex/metabolism , Cell Membrane/metabolism , Protein Domains , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Amino Acid Sequence , Biomarkers , CD3 Complex/chemistry , Conserved Sequence , Gene Expression Profiling , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Multimerization , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/genetics , Signal Transduction , Transcriptome
14.
Sci Signal ; 11(534)2018 06 12.
Article in English | MEDLINE | ID: mdl-29895617

ABSTRACT

Multiple autoimmune pathologies are associated with single-nucleotide polymorphisms of the human gene TAGAP, which encodes TAGAP, a guanosine triphosphatase (GTPase)-activating protein. We showed in mice that Tagap-mediated signaling by the sema3E/plexin-D1 ligand-receptor complex attenuates thymocytes' adhesion to the cortex through their ß1-containing integrins. By promoting thymocyte detachment within the cortex of the thymus, Tagap-mediated signaling enabled their translocation to the medulla, which is required for continued thymic selection. Tagap physically interacted with the cytoplasmic domain of plexin-D1 and directly stimulated the activity and signaling of the GTPase RhoA. In addition, Tagap indirectly mediated the activation of Cdc42 in response to the binding of sema3E to plexin-D1. Both RhoA and Cdc42 are key mediators of cytoskeletal and integrin dynamics in thymocytes. Knockdown of Tagap in mice suppressed the sema3E- and plexin-D1-mediated release of thymocytes that adhered within the cortex through ß1-containing integrins. This suppression led to the impaired translocation of thymocytes from the cortex to the medulla and resulted in the formation of ectopic medullary structures within the thymic cortex. Our results suggest that TAGAP variation modulates the risk of autoimmunity by altering thymocyte migration during thymic selection.


Subject(s)
Autoimmune Diseases/pathology , GTPase-Activating Proteins/metabolism , Thymocytes/cytology , Thymocytes/metabolism , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/metabolism , Cell Adhesion , Cell Movement , Cytoskeletal Proteins , Female , GTPase-Activating Proteins/antagonists & inhibitors , GTPase-Activating Proteins/genetics , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Integrins/genetics , Integrins/metabolism , Intracellular Signaling Peptides and Proteins , Male , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/metabolism , RNA, Small Interfering/genetics , Semaphorins , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
15.
Oncotarget ; 8(58): 98953-98963, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29228740

ABSTRACT

Guidance cues such as semaphorins are attractive novel therapeutic targets for allergic disorders. We have previously described an inhibitory effect of semaphorin 3E (Sema3E) on human airway smooth muscle cell function. We have further addressed a canonical role for Sema3E in acute model of allergic asthma in vivo. Considering the chronic nature of the disease, the potential implication of Sema3E to alleviate long-lasting deficits should be investigated. Expression of Sema3E in a chronic model of allergic asthma was assessed after exposure to house dust mite (HDM) as a clinically relevant allergen. Chronic features of allergic asthma including airway hyper-responsiveness (AHR), inflammation, and remodeling were studied in Sema3E-deficient mice. Additionally, the effect of exogenous Sema3E treatment was evaluated in prophylactic and therapeutic experimental models. We have demonstrated that expression of Sema3E is robustly suppressed in the airways upon chronic HDM exposure. Chronic allergic airway disease was significantly augmented in Sema3E-deficient mouse model which was associated with an increased AHR, remodeling, and Th2/Th17 inflammation. Intranasal Sema3E administration restored chronic deficits of allergic asthma in mice. Data from this study unveil a key regulatory role of Sema3E in chronic course of asthma via orchestration of impaired inflammatory and remodeling responses.

16.
Am J Pathol ; 187(7): 1566-1576, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28634005

ABSTRACT

Semaphorins are an essential family of guidance cues ubiquitously expressed in various organs, which play diverse developmental, homeostatic, and pathological roles. Semaphorin 3E (Sema3E), initially identified as a neuronal chemorepellent, is involved in the regulation of cell migration, proliferation, and angiogenesis. However, expression and function of Sema3E in allergic asthma has not been extensively investigated. We determined the expression of Sema3E in the airways and its effect on airway inflammation, hyperresponsiveness, and remodeling as pathological features of allergic asthma provoked by house dust mite in vivo. Our data indicate that exposure to house dust mite markedly reduces Sema3E expression in mouse airways. More important, replenishment of Sema3E by intranasal administration of exogenous Sema3E protects mice from allergic asthma by reducing eosinophilic inflammation, serum IgE level, and T helper cell 2/T helper cell 17 cytokine response. The regulatory effect of Sema3E on cytokine response was sustained on allergen recall response in the lymph nodes and spleen. Furthermore, goblet cell hyperplasia, collagen deposition, and airway hyperresponsiveness were significantly diminished on Sema3E treatment. The inhibitory effect of Sema3E was associated with a reduction of pulmonary CD11b+ conventional dendritic cells and regulation of CD4+ T-cell cytokine response. Collectively, our data represent a novel approach to treating allergic asthma via regulation of immune response to house dust mite.


Subject(s)
Asthma/prevention & control , Gene Expression Regulation , Glycoproteins/administration & dosage , Membrane Proteins/administration & dosage , Pyroglyphidae/immunology , Respiratory Hypersensitivity/prevention & control , Administration, Intranasal , Airway Remodeling/drug effects , Airway Remodeling/immunology , Allergens/immunology , Animals , Asthma/immunology , CD4-Positive T-Lymphocytes/immunology , Cytokines/immunology , Cytoskeletal Proteins , Dendritic Cells/immunology , Disease Models, Animal , Female , Glycoproteins/genetics , Glycoproteins/metabolism , Inflammation/immunology , Inflammation/prevention & control , Lung/immunology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Recombinant Proteins , Respiratory Hypersensitivity/immunology , Semaphorins , Th17 Cells/immunology , Th2 Cells/immunology
17.
J Immunol ; 198(3): 1023-1033, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27913633

ABSTRACT

Neutrophil migration is an essential step in leukocyte trafficking during inflammatory responses. Semaphorins, originally discovered as axon guidance cues in neural development, have been shown to regulate cell migration beyond the nervous system. However, the potential contribution of semaphorins in the regulation of neutrophil migration is not well understood. This study examines the possible role of a secreted chemorepellent, Semaphorin 3E (Sema3E), in neutrophil migration. In this study, we demonstrated that human neutrophils constitutively express Sema3E high-affinity receptor, PlexinD1. Sema3E displayed a potent ability to inhibit CXCL8/IL-8-induced neutrophil migration as determined using a microfluidic device coupled to real-time microscopy and a transwell system in vitro. The antimigratory effect of Sema3E on human neutrophil migration was associated with suppression of CXCL8/IL-8-mediated Ras-related C3 botulinum toxin substrate 1 GTPase activity and actin polymerization. We further addressed the regulatory role of Sema3E in the regulation of neutrophil migration in vivo. Allergen airway exposure induced higher neutrophil recruitment into the lungs of Sema3e-/- mice compared with wild-type controls. Administration of exogenous recombinant Sema3E markedly reduced allergen-induced neutrophil recruitment into the lungs, which was associated with alleviation of allergic airway inflammation and improvement of lung function. Our data suggest that Sema3E could be considered an essential regulatory mediator involved in modulation of neutrophil migration throughout the course of neutrophilic inflammation.


Subject(s)
Neutrophils/physiology , Semaphorins/physiology , Actins/metabolism , Cell Adhesion Molecules, Neuronal/analysis , Cell Movement , Chemotaxis, Leukocyte , Humans , Interleukin-8/physiology , Intracellular Signaling Peptides and Proteins , Lab-On-A-Chip Devices , Membrane Glycoproteins , rac1 GTP-Binding Protein/metabolism
18.
J Biol Chem ; 291(49): 25292-25305, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27707880

ABSTRACT

The pre-T cell receptor (pre-TCR) is a pTα-ß heterodimer functioning in early αß T cell development. Although once thought to be ligand-autonomous, recent studies show that pre-TCRs participate in thymic repertoire formation through recognition of peptides bound to major histocompatibility molecules (pMHC). Using optical tweezers, we probe pre-TCR bonding with pMHC at the single molecule level. Like the αßTCR, the pre-TCR is a mechanosensor undergoing force-based structural transitions that dynamically enhance bond lifetimes and exploiting allosteric control regulated via the Cß FG loop region. The pre-TCR structural transitions exhibit greater reversibility than TCRαß and ordered force-bond lifetime curves. Higher piconewton force requires binding through both complementarity determining region loops and hydrophobic Vß patch apposition. This patch functions in the pre-TCR as a surrogate Vα domain, fostering ligand promiscuity to favor development of ß chains with self-reactivity but is occluded by α subunit replacement of pTα upon αßTCR formation. At the double negative 3 thymocyte stage where the pre-TCR is first expressed, pre-TCR interaction with self-pMHC ligands imparts growth and survival advantages as revealed in thymic stromal cultures, imprinting fundamental self-reactivity in the T cell repertoire. Collectively, our data imply the existence of sequential mechanosensor αßTCR repertoire tuning via the pre-TCR.


Subject(s)
Complementarity Determining Regions , Gene Expression Regulation/physiology , Receptors, Antigen, T-Cell, alpha-beta , Thymocytes , Animals , Complementarity Determining Regions/biosynthesis , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Mice , Mice, Knockout , Protein Structure, Secondary , Receptors, Antigen, T-Cell, alpha-beta/biosynthesis , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/genetics , Thymocytes/chemistry , Thymocytes/cytology , Thymocytes/metabolism
19.
Proc Natl Acad Sci U S A ; 112(27): 8373-8, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26056289

ABSTRACT

Adaptive cellular immunity requires accurate self- vs. nonself-discrimination to protect against infections and tumorous transformations while at the same time excluding autoimmunity. This vital capability is programmed in the thymus through selection of αßT-cell receptors (αßTCRs) recognizing peptides bound to MHC molecules (pMHC). Here, we show that the pre-TCR (preTCR), a pTα-ß heterodimer appearing before αßTCR expression, directs a previously unappreciated initial phase of repertoire selection. Contrasting with the ligand-independent model of preTCR function, we reveal through NMR and bioforce-probe analyses that the ß-subunit binds pMHC using Vß complementarity-determining regions as well as an exposed hydrophobic Vß patch characteristic of the preTCR. Force-regulated single bonds akin to those of αßTCRs but with more promiscuous ligand specificity trigger calcium flux. Thus, thymic development involves sequential ß- and then, αß-repertoire tuning, whereby preTCR interactions with self pMHC modulate early thymocyte expansion, with implications for ß-selection, immunodominant peptide recognition, and germ line-encoded MHC interaction.


Subject(s)
Cell Differentiation/immunology , Complementarity Determining Regions/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Thymocytes/immunology , Amino Acid Sequence , Animals , Calcium/immunology , Calcium/metabolism , Cells, Cultured , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/metabolism , Flow Cytometry , Histocompatibility Antigens/chemistry , Histocompatibility Antigens/immunology , Histocompatibility Antigens/metabolism , Ligands , Lymphocyte Activation/immunology , Magnetic Resonance Spectroscopy , Mice, Inbred C57BL , Mice, Knockout , Models, Immunological , Models, Molecular , Molecular Sequence Data , Peptides/immunology , Peptides/metabolism , Protein Binding/immunology , Protein Multimerization/immunology , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Sequence Homology, Amino Acid , Thymocytes/cytology , Thymocytes/metabolism , Thymus Gland/embryology , Thymus Gland/immunology , Thymus Gland/metabolism
20.
J Exp Med ; 211(5): 943-59, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24752301

ABSTRACT

We report that programmed death ligand 2 (PD-L2), a known ligand of PD-1, also binds to repulsive guidance molecule b (RGMb), which was originally identified in the nervous system as a co-receptor for bone morphogenetic proteins (BMPs). PD-L2 and BMP-2/4 bind to distinct sites on RGMb. Normal resting lung interstitial macrophages and alveolar epithelial cells express high levels of RGMb mRNA, whereas lung dendritic cells express PD-L2. Blockade of the RGMb-PD-L2 interaction markedly impaired the development of respiratory tolerance by interfering with the initial T cell expansion required for respiratory tolerance. Experiments with PD-L2-deficient mice showed that PD-L2 expression on non-T cells was critical for respiratory tolerance, but expression on T cells was not required. Because PD-L2 binds to both PD-1, which inhibits antitumor immunity, and to RGMb, which regulates respiratory immunity, targeting the PD-L2 pathway has therapeutic potential for asthma, cancer, and other immune-mediated disorders. Understanding this pathway may provide insights into how to optimally modulate the PD-1 pathway in cancer immunotherapy while minimizing adverse events.


Subject(s)
Immune Tolerance/immunology , Lung/immunology , Nerve Tissue Proteins/metabolism , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Animals , Bone Morphogenetic Protein 2/metabolism , Cell Adhesion Molecules, Neuronal , Cell Line, Tumor , Epithelial Cells/metabolism , GPI-Linked Proteins , Humans , Lung/metabolism , Macrophages, Alveolar/metabolism , Mice , Nerve Tissue Proteins/immunology , Programmed Cell Death 1 Ligand 2 Protein/immunology , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...