Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Math Phys Eng Sci ; 475(2228): 20190154, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31534422

ABSTRACT

In a previous paper, we analysed the Keller-Rubinow formulation of Ostwald's supersaturation theory for the formation of Liesegang rings or Liesegang bands, and found that the model is ill-posed, in the sense that after the termination of the first crystal front growth, secondary bands form, as in the experiment, but these are numerically found to be a single grid space wide, and thus an artefact of the numerical method. This ill-posedness is due to the discontinuity in the crystal growth rate, which itself reflects the supersaturation threshold inherent in the theory. Here we show that the ill-posedness can be resolved by the inclusion of a relaxation mechanism describing an impurity coverage fraction, which physically enables the transition in heterogeneous nucleation from precipitate-free impurity to precipitate-covered impurity.

2.
Proc Math Phys Eng Sci ; 473(2205): 20170128, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28989302

ABSTRACT

We study the model of Keller & Rubinow (Keller & Rubinow 1981 J. Chem. Phys74, 5000-5007. (doi:10.1063/1.441752)) describing the formation of Liesegang rings due to Ostwald's supersaturation mechanism. Keller and Rubinow provided an approximate solution both for the growth and equilibration of the first band, and also for the formation of secondary bands, based on a presumed asymptotic limit. However, they did not provide a parametric basis for the assumptions in their solution, nor did they provide any numerical corroboration, particularly of the secondary band formation. Here, we provide a different asymptotic solution, based on a specific parametric limit, and we show that the growth and subsequent cessation of the first band can be explained. We also show that the model is unable to explain the formation of finite width secondary bands, and we confirm this result by numerical computation. We conclude that the model is not fully posed, lacking a transition variable which can describe the hysteretic switch across the nucleation threshold.

SELECTION OF CITATIONS
SEARCH DETAIL
...