Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters










Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220162, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37122213

ABSTRACT

Skeletal and cardiac muscle excitation-contraction coupling commences with Nav1.4/Nav1.5-mediated, surface and transverse (T-) tubular, action potential generation. This initiates feedforward, allosteric or Ca2+-mediated, T-sarcoplasmic reticular (SR) junctional, voltage sensor-Cav1.1/Cav1.2 and ryanodine receptor-RyR1/RyR2 interaction. We review recent structural, physiological and translational studies on possible feedback actions of the resulting SR Ca2+ release on Nav1.4/Nav1.5 function in native muscle. Finite-element modelling predicted potentially regulatory T-SR junctional [Ca2+]TSR domains. Nav1.4/Nav1.5, III-IV linker and C-terminal domain structures included Ca2+ and/or calmodulin-binding sites whose mutations corresponded to specific clinical conditions. Loose-patch-clamped native murine skeletal muscle fibres and cardiomyocytes showed reduced Na+ currents (INa) following SR Ca2+ release induced by the Epac and direct RyR1/RyR2 activators, 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate and caffeine, abrogated by the RyR inhibitor dantrolene. Conversely, dantrolene and the Ca2+-ATPase inhibitor cyclopiazonic acid increased INa. Experimental, catecholaminergic polymorphic ventricular tachycardic RyR2-P2328S and metabolically deficient Pgc1ß-/- cardiomyocytes also showed reduced INa accompanying [Ca2+]i abnormalities rescued by dantrolene- and flecainide-mediated RyR block. Finally, hydroxychloroquine challenge implicated action potential (AP) prolongation in slowing AP conduction through modifying Ca2+ transients. The corresponding tissue/organ preparations each showed pro-arrhythmic, slowed AP upstrokes and conduction velocities. We finally extend discussion of possible Ca2+-mediated effects to further, Ca2+, K+ and Cl-, channel types. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Subject(s)
Dantrolene , Ryanodine Receptor Calcium Release Channel , Animals , Mice , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/genetics , Dantrolene/pharmacology , Feedback , Muscle, Skeletal , Action Potentials , Calcium/metabolism
2.
Nat Commun ; 14(1): 1036, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823422

ABSTRACT

Multivalent ligands of ion channels have proven to be both very rare and highly valuable in yielding unique insights into channel structure and pharmacology. Here, we describe a bivalent peptide from the venom of Xibalbanus tulumensis, a troglobitic arthropod from the enigmatic class Remipedia, that causes persistent calcium release by activation of ion channels involved in muscle contraction. The high-resolution solution structure of φ-Xibalbin3-Xt3a reveals a tandem repeat arrangement of inhibitor-cysteine knot (ICK) domains previously only found in spider venoms. The individual repeats of Xt3a share sequence similarity with a family of scorpion toxins that target ryanodine receptors (RyR). Single-channel electrophysiology and quantification of released Ca2+ stores within skinned muscle fibers confirm Xt3a as a bivalent RyR modulator. Our results reveal convergent evolution of RyR targeting toxins in remipede and scorpion venoms, while the tandem-ICK repeat architecture is an evolutionary innovation that is convergent with toxins from spider venoms.


Subject(s)
Ryanodine Receptor Calcium Release Channel , Scorpion Venoms , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Calcium/metabolism , Ryanodine/pharmacology , Amino Acid Sequence , Peptides/chemistry , Scorpion Venoms/pharmacology , Scorpion Venoms/chemistry
3.
Biophys Rev ; 15(6): 1903-1907, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38192339

ABSTRACT

The discovery of gating currents and asymmetric charge movement in the early 1970s represented a remarkable leap forward in our understanding of the biophysical basis of voltage-dependent events that underlie electrical signalling that is vital for nerve and muscle function. Gating currents and charge movement reflect a fundamental process in which charged amino acid residues in an ion channel protein move in response to a change in the membrane electrical field and therefore activate the specific voltage-dependent response of that protein. The detection of gating currents and asymmetric charge movement over the past 50 years has been pivotal in unraveling the multiple molecular and intra-molecular processes which lead to action potentials in excitable tissues and excitation-contraction (EC) coupling in skeletal muscle. The recording of gating currents and asymmetric charge movement remains an essential component of investigations into the basic molecular mechanisms of neuronal conduction and muscle contraction.

4.
Int J Mol Sci ; 25(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38203604

ABSTRACT

The recessive Ryanodine Receptor Type 1 (RyR1) P3527S mutation causes mild muscle weakness in patients and increased resting cytoplasmic [Ca2+] in transformed lymphoblastoid cells. In the present study, we explored the cellular/molecular effects of this mutation in a mouse model of the mutation (RyR1 P3528S). The results were obtained from 73 wild type (WT/WT), 82 heterozygous (WT/MUT) and 66 homozygous (MUT/MUT) mice with different numbers of observations in individual data sets depending on the experimental protocol. The results showed that WT/MUT and MUT/MUT mouse strength was less than that of WT/WT mice, but there was no difference between genotypes in appearance, weight, mobility or longevity. The force frequency response of extensor digitorum longus (EDL) and soleus (SOL) muscles from WT/MUT and MUT/MUT mice was shifter to higher frequencies. The specific force of EDL muscles was reduced and Ca2+ activation of skinned fibres shifted to a lower [Ca2+], with an increase in type I fibres in EDL muscles and in mixed type I/II fibres in SOL muscles. The relative activity of RyR1 channels exposed to 1 µM cytoplasmic Ca2+ was greater in WT/MUT and MUT/MUT mice than in WT/WT mice. We suggest the altered RyR1 activity due to the P2328S substitution could increase resting [Ca2+] in muscle fibres, leading to changes in fibre type and contractile properties.


Subject(s)
Ion Channel Gating , Ryanodine Receptor Calcium Release Channel , Animals , Humans , Mice , Cytoplasm , Muscle Contraction , Muscle Fibers, Skeletal , Ryanodine Receptor Calcium Release Channel/genetics
5.
J Gen Physiol ; 154(9)2022 09 05.
Article in English | MEDLINE | ID: mdl-35713932

ABSTRACT

Flecainide, a cardiac class 1C blocker of the surface membrane sodium channel (NaV1.5), has also been reported to reduce cardiac ryanodine receptor (RyR2)-mediated sarcoplasmic reticulum (SR) Ca2+ release. It has been introduced as a clinical antiarrhythmic agent for catecholaminergic polymorphic ventricular tachycardia (CPVT), a condition most commonly associated with gain-of-function RyR2 mutations. Current debate concerns both cellular mechanisms of its antiarrhythmic action and molecular mechanisms of its RyR2 actions. At the cellular level, it targets NaV1.5, RyR2, Na+/Ca2+ exchange (NCX), and additional proteins involved in excitation-contraction (EC) coupling and potentially contribute to the CPVT phenotype. This Viewpoint primarily addresses the various direct molecular actions of flecainide on isolated RyR2 channels in artificial lipid bilayers. Such studies demonstrate different, multifarious, flecainide binding sites on RyR2, with voltage-dependent binding in the channel pore or voltage-independent binding at distant peripheral sites. In contrast to its single NaV1.5 pore binding site, flecainide may bind to at least four separate inhibitory sites on RyR2 and one activation site. None of these binding sites have been specifically located in the linear RyR2 sequence or high-resolution structure. Furthermore, it is not clear which of the inhibitory sites contribute to flecainide's reduction of spontaneous Ca2+ release in cellular studies. A confounding observation is that flecainide binding to voltage-dependent inhibition sites reduces cation fluxes in a direction opposite to physiological Ca2+ flow from SR lumen to cytosol. This may suggest that, rather than directly blocking Ca2+ efflux, flecainide can reduce Ca2+ efflux by blocking counter currents through the pore which otherwise limit SR membrane potential change during systolic Ca2+ efflux. In summary, the antiarrhythmic effects of flecainide in CPVT seem to involve multiple components of EC coupling and multiple actions on RyR2. Their clarification may identify novel specific drug targets and facilitate flecainide's clinical utilization in CPVT.


Subject(s)
Flecainide , Tachycardia, Ventricular , Anti-Arrhythmia Agents/pharmacology , Calcium/metabolism , Flecainide/metabolism , Flecainide/pharmacology , Humans , Myocytes, Cardiac/metabolism , Ryanodine/metabolism , Ryanodine/pharmacology , Ryanodine Receptor Calcium Release Channel/metabolism , Sodium/metabolism , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/metabolism
6.
Protein Sci ; 31(5): e4311, 2022 05.
Article in English | MEDLINE | ID: mdl-35481653

ABSTRACT

Excitation-contraction coupling (ECC) is the physiological process in which an electrical signal originating from the central nervous system is converted into muscle contraction. In skeletal muscle tissue, the key step in the molecular mechanism of ECC initiated by the muscle action potential is the cooperation between two Ca2+ channels, dihydropyridine receptor (DHPR; voltage-dependent L-type calcium channel) and ryanodine receptor 1 (RyR1). These two channels were originally postulated to communicate with each other via direct mechanical interactions; however, the molecular details of this cooperation have remained ambiguous. Recently, it has been proposed that one or more supporting proteins are in fact required for communication of DHPR with RyR1 during the ECC process. One such protein that is increasingly believed to play a role in this interaction is the SH3 and cysteine-rich domain-containing protein 3 (STAC3), which has been proposed to bind a cytosolic portion of the DHPR α1S subunit known as the II-III loop. In this work, we present direct evidence for an interaction between a small peptide sequence of the II-III loop and several residues within the SH3 domains of STAC3 as well as the neuronal isoform STAC2. Differences in this interaction between STAC3 and STAC2 suggest that STAC3 possesses distinct biophysical features that are potentially important for its physiological interactions with the II-III loop. Therefore, this work demonstrates an isoform-specific interaction between STAC3 and the II-III loop of DHPR and provides novel insights into a putative molecular mechanism behind this association in the skeletal muscle ECC process.


Subject(s)
Calcium Channels, L-Type , Ryanodine Receptor Calcium Release Channel , Calcium Channels, L-Type/chemistry , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Excitation Contraction Coupling/physiology , Muscle, Skeletal/physiology , Protein Isoforms/metabolism
7.
Front Physiol ; 13: 830367, 2022.
Article in English | MEDLINE | ID: mdl-35222090

ABSTRACT

The cardiac ryanodine receptor Ca2+ release channel (RyR2) is inserted into the membrane of intracellular sarcoplasmic reticulum (SR) myocyte Ca2+ stores, where it releases the Ca2+ essential for contraction. Mutations in proteins involved in Ca2+ signaling can lead to catecholaminergic polymorphic ventricular tachycardia (CPVT). The most common cellular phenotype in CPVT is higher than normal cytoplasmic Ca2+ concentrations during diastole due to Ca2+ leak from the SR through mutant RyR2. Arrhythmias are triggered when the surface membrane sodium calcium exchanger (NCX) lowers cytoplasmic Ca2+ by importing 3 Na+ ions to extrude one Ca2+ ion. The Na+ influx leads to delayed after depolarizations (DADs) which trigger arrhythmia when reaching action potential threshold. Present therapies use drugs developed for different purposes that serendipitously reduce RyR2 Ca2+ leak, but can adversely effect systolic Ca2+ release and other target processes. Ideal drugs would specifically reverse the effect of individual mutations, without altering normal channel function. Such drugs will depend on the location of the mutation in the 4967-residue monomer and the effect of the mutation on local structure, and downstream effects on structures along the conformational pathway to the pore. Such atomic resolution information is only now becoming available. This perspective provides a summary of known or predicted structural changes associated with a handful of CPVT mutations. Known molecular changes associated with RyR opening are discussed, as well one study where minute molecular changes with a particular mutation have been tracked from the N-terminal mutation site to gating residues in the channel pore.

8.
Cells ; 10(8)2021 08 16.
Article in English | MEDLINE | ID: mdl-34440870

ABSTRACT

Cardiac ryanodine receptor (RyR2) mutations are implicated in the potentially fatal catecholaminergic polymorphic ventricular tachycardia (CPVT) and in atrial fibrillation. CPVT has been successfully treated with flecainide monotherapy, with occasional notable exceptions. Reported actions of flecainide on cardiac sodium currents from mice carrying the pro-arrhythmic homozygotic RyR2-P2328S mutation prompted our explorations of the effects of flecainide on their RyR2 channels. Lipid bilayer electrophysiology techniques demonstrated a novel, paradoxical increase in RyR2 activity. Preceding flecainide exposure, channels were mildly activated by 1 mM luminal Ca2+ and 1 µM cytoplasmic Ca2+, with open probabilities (Po) of 0.03 ± 0.01 (wild type, WT) or 0.096 ± 0.024 (P2328S). Open probability (Po) increased within 0.5 to 3 min of exposure to 0.5 to 5.0 µM cytoplasmic flecainide, then declined with higher concentrations of flecainide. There were no such increases in a subset of high Po channels with Po ≥ 0.08, although Po then declined with ≥5 µM (WT) or ≥50 µM flecainide (P2328S). On average, channels with Po < 0.08 were significantly activated by 0.5 to 10 µM of flecainide (WT) or 0.5 to 50 µM of flecainide (P2328S). These results suggest that flecainide can bind to separate activation and inhibition sites on RyR2, with activation dominating in lower activity channels and inhibition dominating in more active channels.


Subject(s)
Arrhythmias, Cardiac/metabolism , Flecainide/pharmacology , Ion Channel Gating/drug effects , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Anti-Arrhythmia Agents/metabolism , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/genetics , Calcium/metabolism , Flecainide/metabolism , Ion Channel Gating/physiology , Lipid Bilayers/metabolism , Membrane Potentials , Mice , Ryanodine Receptor Calcium Release Channel/genetics , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology
9.
Nat Commun ; 11(1): 6408, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33328478

ABSTRACT

Extracellular histones in neutrophil extracellular traps (NETs) or in chromatin from injured tissues are highly pathological, particularly when liberated by DNases. We report the development of small polyanions (SPAs) (~0.9-1.4 kDa) that interact electrostatically with histones, neutralizing their pathological effects. In vitro, SPAs inhibited the cytotoxic, platelet-activating and erythrocyte-damaging effects of histones, mechanistic studies revealing that SPAs block disruption of lipid-bilayers by histones. In vivo, SPAs significantly inhibited sepsis, deep-vein thrombosis, and cardiac and tissue-flap models of ischemia-reperfusion injury (IRI), but appeared to differ in their capacity to neutralize NET-bound versus free histones. Analysis of sera from sepsis and cardiac IRI patients supported these differential findings. Further investigations revealed this effect was likely due to the ability of certain SPAs to displace histones from NETs, thus destabilising the structure. Finally, based on our work, a non-toxic SPA that inhibits both NET-bound and free histone mediated pathologies was identified for clinical development.


Subject(s)
Extracellular Traps/drug effects , Histones/metabolism , Polymers/pharmacology , Sepsis/blood , Sepsis/drug therapy , Animals , Erythrocytes/drug effects , Erythrocytes/pathology , Female , Histones/toxicity , Humans , Lipid Bilayers , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Myocardial Infarction/blood , Platelet Activation/drug effects , Polyelectrolytes , Polymers/chemistry , Rats, Wistar , Reperfusion Injury/blood , Reperfusion Injury/pathology , Sepsis/pathology
10.
Life Sci ; 260: 118234, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32791148

ABSTRACT

AIMS: Our aim was to characterise the actions of novel BIT compounds with structures based on peptides and toxins that bind to significant regulatory sites on ryanodine receptor (RyR) Ca2+ release channels. RyRs, located in sarcoplasmic reticulum (SR) Ca2+ store membranes of striated muscle, are essential for muscle contraction. Although severe sometimes-deadly myopathies occur when the channels become hyperactive following genetic or acquired changes, specific inhibitors of RyRs are rare. MAIN METHODS: The effect of BIT compounds was determined by spectrophotometric analysis of Ca2+ release from isolated SR vesicles, analysis of single RyR channel activity in artificial lipid bilayers and contraction of intact and skinned skeletal muscle fibres. KEY FINDINGS: The inhibitory compounds reduced: (a) Ca2+ release from SR vesicles with IC50s of 1.1-2.5 µM, competing with activation by parent peptides and toxins; (b) single RyR ion channel activity with IC50s of 0.5-1.5 µM; (c) skinned fibre contraction. In contrast, activating BIT compounds increased Ca2+ release with an IC50 of 5.0 µM and channel activity with AC50s of 2 to 12 nM and enhanced skinned fibre contraction. Sub-conductance activity dominated channel activity with both inhibitors and activators. Effects of all compounds on skeletal and cardiac RyRs were similar and reversible. Competition experiments suggest that the BIT compounds bind to the regulatory helical domains of the RyRs that impact on channel gating mechanisms through long-range allosteric interactions. SIGNIFICANCE: The BIT compounds are strong modulators of RyR activity and provide structural templates for novel research tools and drugs to combat muscle disease.


Subject(s)
Peptides/pharmacology , Ryanodine Receptor Calcium Release Channel/drug effects , Sarcoplasmic Reticulum/chemistry , Animals , Biomimetics , Calcium/metabolism , Muscle Contraction/drug effects , Muscle, Skeletal/ultrastructure , Myocardium/ultrastructure , Rabbits , Ryanodine Receptor Calcium Release Channel/physiology , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Scorpion Venoms , Sheep
11.
J Cell Sci ; 132(10)2019 05 21.
Article in English | MEDLINE | ID: mdl-31028179

ABSTRACT

Mutations in the cardiac ryanodine receptor Ca2+ release channel (RyR2) can cause deadly ventricular arrhythmias and atrial fibrillation (AF). The RyR2-P2328S mutation produces catecholaminergic polymorphic ventricular tachycardia (CPVT) and AF in hearts from homozygous RyR2P2328S/P2328S (denoted RyR2S/S) mice. We have now examined P2328S RyR2 channels from RyR2S/S hearts. The activity of wild-type (WT) and P2328S RyR2 channels was similar at a cytoplasmic [Ca2+] of 1 mM, but P2328S RyR2 was significantly more active than WT at a cytoplasmic [Ca2+] of 1 µM. This was associated with a >10-fold shift in the half maximal activation concentration (AC50) for Ca2+ activation, from ∼3.5 µM Ca2+ in WT RyR2 to ∼320 nM in P2328S channels and an unexpected >1000-fold shift in the half maximal inhibitory concentration (IC50) for inactivation from ∼50 mM in WT channels to ≤7 µM in P2328S channels, which is into systolic [Ca2+] levels. Unexpectedly, the shift in Ca2+ activation was not associated with changes in sub-conductance activity, S2806 or S2814 phosphorylation or the level of FKBP12 (also known as FKBP1A) bound to the channels. The changes in channel activity seen with the P2328S mutation correlate with altered Ca2+ homeostasis in myocytes from RyR2S/S mice and the CPVT and AF phenotypes.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Arrhythmias, Cardiac/metabolism , Atrial Fibrillation/metabolism , Ion Channel Gating/physiology , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Arrhythmias, Cardiac/genetics , Atrial Fibrillation/genetics , Calcium/metabolism , Cytoplasm/metabolism , Mice , Myocytes, Cardiac/metabolism , Phosphorylation , Ryanodine Receptor Calcium Release Channel/genetics
12.
F1000Res ; 72018.
Article in English | MEDLINE | ID: mdl-30542613

ABSTRACT

The ryanodine receptor calcium release channel is central to cytoplasmic Ca 2+ signalling in skeletal muscle, the heart, and many other tissues, including the central nervous system, lymphocytes, stomach, kidney, adrenal glands, ovaries, testes, thymus, and lungs. The ion channel protein is massive (more than 2.2 MDa) and has a structure that has defied detailed determination until recent developments in cryo-electron microscopy revealed much of its structure at near-atomic resolution. The availability of this high-resolution structure has provided the most significant advances in understanding the function of the ion channel in the past 30 years. We can now visualise the molecular environment of individual amino acid residues that form binding sites for essential modulators of ion channel function and determine its role in Ca 2+ signalling. Importantly, the structure has revealed the structural environment of the many deletions and point mutations that disrupt Ca 2+ signalling in skeletal and cardiac myopathies and neuropathies. The implications are of vital importance to our understanding of the molecular basis of the ion channel's function and for the design of therapies to counteract the effects of ryanodine receptor-associated disorders.


Subject(s)
Calcium Signaling/genetics , Ryanodine Receptor Calcium Release Channel/physiology , Animals , Binding Sites/genetics , Cryoelectron Microscopy , Humans , Protein Conformation , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/genetics
13.
ChemMedChem ; 13(18): 1957-1971, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30058107

ABSTRACT

Ryanodine receptor (RyR) Ca2+ -release channels are essential for contraction in skeletal and cardiac muscle and are prime targets for modification of contraction in disorders that affect either the skeletal or heart musculature. We designed and synthesized a number of compounds with structures based on a naturally occurring peptide (A peptides) that modifies the activity of RyRs. In total, 34 compounds belonging to eight different classes were prepared. The compounds were screened for their ability to enhance Ca2+ release from isolated cardiac sarcoplasmic reticulum (SR) vesicles, with 25 displaying enhanced Ca2+ release. Competition studies with the parent peptides indicated that the synthetic compounds act at a competing site. The activity of the most effective of the compounds, BIT 180, was further explored using Ca2+ release from skeletal SR vesicles and contraction in intact skeletal muscle fibers. The compounds did not alter tension in intact fibers, indicating that (as expected) they are not membrane permeable, but importantly, that they are not toxic to the intact cells. Proof in principal that the compounds would be effective in intact muscle fibers if rendered membrane permeable was obtained with a structurally related membrane-permeable scorpion toxin (imperatoxin A), which was found to enhance contraction.


Subject(s)
Peptides/pharmacology , Peptidomimetics/pharmacology , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Dose-Response Relationship, Drug , Molecular Structure , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Peptides/chemical synthesis , Peptides/chemistry , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Rabbits , Sheep , Structure-Activity Relationship
14.
Int J Biochem Cell Biol ; 101: 49-53, 2018 08.
Article in English | MEDLINE | ID: mdl-29775742

ABSTRACT

Calcium release from internal stores is a quintessential event in excitation-contraction coupling in cardiac and skeletal muscle. The ryanodine receptor Ca2+ release channel is embedded in the internal sarcoplasmic reticulum Ca2+ store, which releases Ca2+ into the cytoplasm, enabling contraction. Ryanodine receptors form the hub of a macromolecular complex extending from the extracellular space to the sarcoplasmic reticulum lumen. Ryanodine receptor activity is influenced by the integrated effects of associated co-proteins, ions, and post-translational phosphor and redox modifications. In healthy muscle, ryanodine receptors are phosphorylated and redox modified to basal levels, to support cellular function. A pathological increase in the degree of both post-translational modifications disturbs intracellular Ca2+ signalling, and is implicated in various cardiac and skeletal disorders. This review summarises our current understanding of the mechanisms linking ryanodine receptor post-translational modification to heart failure and skeletal myopathy and highlights the challenges and controversies within the field.


Subject(s)
Calcium/metabolism , Heart Failure/metabolism , Myotonia Congenita/metabolism , Protein Processing, Post-Translational , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Calcium Signaling , Excitation Contraction Coupling/physiology , Heart Failure/genetics , Heart Failure/pathology , Humans , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myocardium/metabolism , Myocardium/pathology , Myotonia Congenita/genetics , Myotonia Congenita/pathology , Phosphorylation , Reactive Oxygen Species/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Sarcoplasmic Reticulum/metabolism
15.
Br J Pharmacol ; 175(8): 1260-1278, 2018 04.
Article in English | MEDLINE | ID: mdl-28369767

ABSTRACT

Flecainide suppresses cardiac tachyarrhythmias including paroxysmal atrial fibrillation, supraventricular tachycardia and arrhythmic long QT syndromes (LQTS), as well as the Ca2+ -mediated, catecholaminergic polymorphic ventricular tachycardia (CPVT). However, flecainide can also exert pro-arrhythmic effects most notably following myocardial infarction and when used to diagnose Brugada syndrome (BrS). These divergent actions result from its physiological and pharmacological actions at multiple, interacting levels of cellular organization. These were studied in murine genetic models with modified Nav channel or intracellular ryanodine receptor (RyR2)-Ca2+ channel function. Flecainide accesses its transmembrane Nav 1.5 channel binding site during activated, open, states producing a use-dependent antagonism. Closing either activation or inactivation gates traps flecainide within the pore. An early peak INa related to activation of Nav channels followed by rapid de-activation, drives action potential (AP) upstrokes and their propagation. This is diminished in pro-arrhythmic conditions reflecting loss of function of Nav 1.5 channels, such as BrS, accordingly exacerbated by flecainide challenge. Contrastingly, pro-arrhythmic effects attributed to prolonged AP recovery by abnormal late INaL following gain-of-function modifications of Nav 1.5 channels in LQTS3 are reduced by flecainide. Anti-arrhythmic effects of flecainide that reduce triggering in CPVT models mediated by sarcoplasmic reticular Ca2+ release could arise from its primary actions on Nav channels indirectly decreasing [Ca2+ ]i through a reduced [Na+ ]i and/or direct open-state RyR2-Ca2+ channel antagonism. The consequent [Ca2+ ]i alterations could also modify AP propagation velocity and therefore arrhythmic substrate through its actions on Nav 1.5 channel function. This is consistent with the paradoxical differences between flecainide actions upon Na+ currents, AP conduction and arrhythmogenesis under circumstances of normal and increased RyR2 function. LINKED ARTICLES: This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/physiopathology , Flecainide/pharmacology , Potassium Channel Blockers/pharmacology , Animals , Anti-Arrhythmia Agents/therapeutic use , Arrhythmias, Cardiac/drug therapy , Calcium/physiology , Flecainide/therapeutic use , Humans , Potassium Channel Blockers/therapeutic use , Potassium Channels/physiology , Ryanodine Receptor Calcium Release Channel/physiology
16.
Am J Physiol Cell Physiol ; 314(3): C323-C333, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29212769

ABSTRACT

Malignant hyperthermia (MH) susceptibility has been recently linked to a novel variant of ß1a subunit of the dihydropyridine receptor (DHPR), a channel essential for Ca2+ regulation in skeletal muscle. Here we evaluate the effect of the mutant variant V156A on the structure/function of DHPR ß1a subunit and assess its role on Ca2+ metabolism of cultured myotubes. Using differential scanning fluorimetry, we show that mutation V156A causes a significant reduction in thermal stability of the Src homology 3/guanylate kinase core domain of ß1a subunit. Expression of the variant subunit in ß1-null mouse myotubes resulted in increased sensitivity to caffeine stimulation. Whole cell patch-clamp analysis of ß1a-V156A-expressing myotubes revealed a -2 mV shift in voltage dependence of channel activation, but no changes in Ca2+ conductance, current kinetics, or sarcoplasmic reticulum Ca2+ load were observed. Measurement of resting free Ca2+ and Na+ concentrations shows that both cations were significantly elevated in ß1a-V156A-expressing myotubes and that these changes were linked to increased rates of plasmalemmal Ca2+ entry through Na+/Ca2+ exchanger and/or transient receptor potential canonical channels. Overall, our data show that mutant variant V156A results in instability of protein subdomains of ß1a subunit leading to a phenotype of Ca2+ dysregulation that partly resembles that of other MH-linked mutations of DHPR α1S subunit. These data prove that homozygous expression of variant ß1a-V156A has the potential to be a pathological variant, although it may require other gene defects to cause a full MH phenotype.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Signaling , Malignant Hyperthermia/metabolism , Myoblasts/metabolism , Animals , Caffeine/pharmacology , Calcium/metabolism , Calcium Channels, L-Type/chemistry , Calcium Channels, L-Type/drug effects , Calcium Channels, L-Type/genetics , Calcium Signaling/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Homozygote , Humans , Kinetics , Malignant Hyperthermia/genetics , Malignant Hyperthermia/physiopathology , Mice, Knockout , Mutation , Myoblasts/drug effects , Protein Domains , Protein Stability , Structure-Activity Relationship
18.
Mol Pharmacol ; 92(5): 576-587, 2017 11.
Article in English | MEDLINE | ID: mdl-28916620

ABSTRACT

The chemotherapeutic anthracycline metabolite doxorubicinol (doxOL) has been shown to interact with and disrupt the function of the cardiac ryanodine receptor Ca2+ release channel (RyR2) in the sarcoplasmic reticulum (SR) membrane and the SR Ca2+ binding protein calsequestrin 2 (CSQ2). Normal increases in RyR2 activity in response to increasing diastolic SR [Ca2+] are influenced by CSQ2 and are disrupted in arrhythmic conditions. Therefore, we explored the action of doxOL on RyR2's response to changes in luminal [Ca2+] seen during diastole. DoxOL abolished the increase in RyR2 activity when luminal Ca2+ was increased from 0.1 to 1.5 mM. This was not due to RyR2 oxidation, but depended entirely on the presence of CSQ2 in the RyR2 complex. DoxOL binding to CSQ2 reduced both the Ca2+ binding capacity of CSQ2 (by 48%-58%) and its aggregation, and lowered CSQ2 association with the RyR2 complex by 67%-77%. Each of these effects on CSQ2, and the lost RyR2 response to changes in luminal [Ca2+], was duplicated by exposing native RyR2 channels to subphysiologic (≤1.0 µM) luminal [Ca2+]. We suggest that doxOL and low luminal Ca2+ both disrupt the CSQ2 polymer, and that the association of the monomeric protein with the RyR2 complex shifts the increase in RyR2 activity with increasing luminal [Ca2+] away from the physiologic [Ca2+] range. Subsequently, these changes may render the channel insensitive to changes of luminal Ca2+ that occur through the cardiac cycle. The altered interactions between CSQ2, triadin, and/or junctin and RyR2 may produce an arrhythmogenic substrate in anthracycline-induced cardiotoxicity.


Subject(s)
Anthracyclines/metabolism , Calcium/metabolism , Calsequestrin/metabolism , Doxorubicin/analogs & derivatives , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/physiology , Animals , Anthracyclines/pharmacology , Calcium/physiology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Calsequestrin/pharmacology , Cell Culture Techniques/methods , Dose-Response Relationship, Drug , Doxorubicin/metabolism , Doxorubicin/pharmacology , Drug Interactions/physiology , Myocytes, Cardiac/drug effects , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Sheep
19.
J Cell Sci ; 130(20): 3588-3600, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28851804

ABSTRACT

Ryanodine receptor (RyR) Ca2+ channels are central to striated muscle function and influence signalling in neurons and other cell types. Beneficially low RyR activity and maximum conductance opening may be stabilised when RyRs bind to FK506 binding proteins (FKBPs) and destabilised by FKBP dissociation, with submaximal opening during RyR hyperactivity associated with myopathies and neurological disorders. However, the correlation with submaximal opening is debated and quantitative evidence is lacking. Here, we have measured altered FKBP binding to RyRs and submaximal activity with addition of wild-type (WT) CLIC2, an inhibitory RyR ligand, or its H101Q mutant that hyperactivates RyRs, which probably causes cardiac and intellectual abnormalities. The proportion of sub-conductance opening increases with WT and H101Q CLIC2 and is correlated with reduced FKBP-RyR association. The sub-conductance opening reduces RyR currents in the presence of WT CLIC2. In contrast, sub-conductance openings contribute to excess RyR 'leak' with H101Q CLIC2. There are significant FKBP and RyR isoform-specific actions of CLIC2, rapamycin and FK506 on FKBP-RyR association. The results show that FKBPs do influence RyR gating and would contribute to excess Ca2+ release in this CLIC2 RyR channelopathy.


Subject(s)
Chloride Channels/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Tacrolimus Binding Proteins/metabolism , Animals , Ion Channel Gating , Membrane Potentials , Mutation, Missense , Protein Binding , Rabbits , Sheep, Domestic
20.
Adv Pharmacol ; 79: 287-324, 2017.
Article in English | MEDLINE | ID: mdl-28528672

ABSTRACT

Ryanodine receptor (RyR) ion channels are essential for skeletal and cardiac muscle function. Their knockout leads to perinatal death from respiratory and cardiac failure. Acquired changes or mutations in the protein cause debilitating skeletal myopathy and cardiac arrhythmia which can be deadly. Knowledge of the pharmacology of RyR channels is central to developing effective and specific treatments of these myopathies. The ion channel is a >2.2MDa homotetamer with distinct structural and functional characteristics giving rise to a myriad of regulatory sites that are potential therapeutic targets. Australian researchers have been intimately involved in the exploration of the proteins since their identification in the mid-1980s. We discuss major aspects of RyR physiology and pharmacology that have been tackled in Australian laboratories. Specific areas of interest include ultrastructural aspects and mechanisms of RyR activation in excitation-contraction (EC) coupling and related pharmacological developments, regulation of RyRs by divalent cations, by associated proteins including the FK506-binding proteins, by redox factors and phosphorylation. We consider adverse effects of anthracycline chemotherapeutic drugs on cardiac RyRs. Phenotypes associated with RyR mutations are discussed with current and developing therapeutic approaches for treating the underlying RyR dysfunction.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Muscular Diseases/physiopathology , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Arrhythmias, Cardiac/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...