Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Oncotarget ; 12(21): 2114-2130, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34676045

ABSTRACT

The therapeutic efficacy of temozolomide (TMZ) is hindered by inherent and acquired resistance. Biomarkers such as MGMT expression and MMR proficiency are used as predictors of response. However, not all MGMTlow/-ve/MMRproficient patients benefit from TMZ treatment, indicating a need for additional patient selection criteria. We explored the role of ATR in mediating TMZ resistance and whether ATR inhibitors (ATRi) could reverse this resistance in multiple cancer lines. We observed that only 31% of MGMTlow/-ve/MMRproficient patient-derived and established cancer lines are sensitive to TMZ at clinically relevant concentrations. TMZ treatment resulted in DNA damage signaling in both sensitive and resistant lines, but prolonged G2/M arrest and cell death were exclusive to sensitive models. Inhibition of ATR but not ATM, sensitized the majority of resistant models to TMZ and resulted in measurable DNA damage and persistent growth inhibition. Also, compromised homologous recombination (HR) via RAD51 or BRCA1 loss only conferred sensitivity to TMZ when combined with an ATRi. Furthermore, low REV3L mRNA expression correlated with sensitivity to the TMZ and ATRi combination in vitro and in vivo. This suggests that HR defects and low REV3L levels could be useful selection criteria for enhanced clinical efficacy of an ATRi plus TMZ combination.

2.
Cell Death Discov ; 7(1): 134, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34088893

ABSTRACT

Ovarian cancer is the most lethal gynecological cancer in the US. Standard treatment consists of surgery followed by chemotherapies relying on apoptotic tumor cell death. Most women with advanced stage disease will relapse, suggesting that this disease is characterized by primary and acquired resistance to chemotherapy, and novel approaches to treatment are greatly needed. Low Caspase 8 expression levels in ovarian cancers correlate with resistance to apoptotic chemotherapy, and a subpopulation of patients with low Caspase 8 levels exhibit poorer overall survival after standard-of-care treatment. We hypothesized that low Caspase 8 function reduces the ability of cancer cells to undergo apoptosis when exposed to standard chemotherapy and that second mitochondria-derived activator of caspases (Smac)-mimetics could increase cell death in combination with chemotherapy. Here we show that combination treatment with a Smac-mimetic can target tumor cells with low Caspase 8 and induce necroptotic cell death. We investigated the in vitro effect of Smac-mimetic added to carboplatin and paclitaxel treatment of ovarian cancer cells expressing wild type and low Caspase 8 levels, which resulted in a 2-4-fold enhancement of cell death. Mice bearing subcutaneous or intraperitoneal ovarian xenografts showed greater aggressiveness of Caspase 8-deficient versus wild-type tumors; combined in vivo treatment with chemotherapy and Smac-mimetic resulted in >50% decrease in low Caspase 8 xenograft growth, as well as significantly enhanced overall survival, especially when given simultaneously with paclitaxel. Surprisingly, Smac-mimetic on the same day as carboplatin decreased mouse survival compared to when it was given on a sequential day of treatment. The antagonism was associated with a decrease in DNA damage markers, emphasizing the importance of optimizing timing of drug administration. Clinical validation of such approaches is needed to increase the effectiveness of current standard ovarian cancer treatment.

3.
Oncotarget ; 11(44): 3959-3971, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33216844

ABSTRACT

BACKGROUND: TRC102 inhibits base excision repair by binding abasic sites and preventing AP endonuclease processing; it potentiates the activity of alkylating agents, including temozolomide, in murine models. In published xenograft studies, TRC102 enhanced the antitumor effect of temozolomide regardless of cell line genetic characteristics, e.g., O6-methylguanine DNA methyltransferase (MGMT), mismatch repair (MMR), or p53 status. MATERIALS AND METHODS: We conducted a phase 1 trial of TRC102 with temozolomide given orally on days 1-5 of 28-day cycles in adult patients with refractory solid tumors that had progressed on standard therapy. Tumor induction of nuclear biomarkers of DNA damage response (DDR) γH2AX, pNBs1, and Rad51 was assessed in the context of MGMT and MMR protein expression for expansion cohort patients. RESULTS: Fifty-two patients were enrolled (37 escalation, 15 expansion) with 51 evaluable for response. The recommended phase 2 dose was 125 mg TRC102, 150 mg/m2 temozolomide QDx5. Common adverse events (grade 3/4) included anemia (19%), lymphopenia (12%), and neutropenia (10%). Four patients achieved partial responses (1 non-small cell lung cancer, 2 granulosa cell ovarian cancer, and 1 colon cancer) and 13 patients had a best response of stable disease. Retrospective analysis of 15 expansion cohort patients did not demonstrate a correlation between low tumor MGMT expression and patient response, but treatment induced nuclear Rad51 responses in 6 of 12 patients. CONCLUSIONS: The combination of TRC 102 with temozolomide is active, with 4 of 51 patients experiencing a partial response and 13 of 51 experiencing stable disease, and the side effect profile is manageable.

4.
Clin Cancer Res ; 25(10): 3084-3095, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30792217

ABSTRACT

PURPOSE: We sought to examine the pharmacodynamic activation of the DNA damage response (DDR) pathway in tumors following anticancer treatment for confirmation of target engagement. EXPERIMENTAL DESIGN: We evaluated the time course and spatial activation of 3 protein biomarkers of DNA damage recognition and repair (γH2AX, pS343-Nbs1, and Rad51) simultaneously in a quantitative multiplex immunofluorescence assay (IFA) to assess DDR pathway activation in tumor tissues following exposure to DNA-damaging agents. RESULTS: Because of inherent biological variability, baseline DDR biomarker levels were evaluated in a colorectal cancer microarray to establish clinically relevant thresholds for pharmacodynamic activation. Xenograft-bearing mice and clinical colorectal tumor biopsies obtained from subjects exposed to DNA-damaging therapeutic regimens demonstrated marked intratumor heterogeneity in the timing and extent of DDR biomarker activation due, in part, to the cell-cycle dependency of DNA damage biomarker expression. CONCLUSIONS: We have demonstrated the clinical utility of this DDR multiplex IFA in preclinical models and clinical specimens following exposure to multiple classes of cytotoxic agents, DNA repair protein inhibitors, and molecularly targeted agents, in both homologous recombination-proficient and -deficient contexts. Levels exceeding 4% nuclear area positive (NAP) γH2AX, 4% NAP pS343-Nbs1, and 5% cells with ≥5 Rad51 nuclear foci indicate a DDR activation response to treatment in human colorectal cancer tissue. Determination of effect-level cutoffs allows for robust interpretation of biomarkers with significant interpatient and intratumor heterogeneity; simultaneous assessment of biomarkers induced at different phases of the DDR guards against the risk of false negatives due to an ill-timed biopsy.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , DNA Damage , Animals , Cell Cycle Proteins/metabolism , Clofarabine/pharmacology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , DNA Repair , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , HCT116 Cells , HT29 Cells , Histones/metabolism , Humans , Mice , Mice, Nude , Nuclear Proteins/metabolism , Rad51 Recombinase/metabolism , Topotecan/pharmacology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Gemcitabine
5.
Oncotarget ; 9(24): 17104-17116, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29682208

ABSTRACT

DNA double strand breaks (DSBs) induced by cancer therapeutic agents can lead to DNA damage repair or persistent DNA damage, which can induce apoptotic cell death; however, apoptosis also induces DSBs independent of genotoxic insult. γH2AX is an established biomarker for DSBs but cannot distinguish between these mechanisms. Activated cleaved caspase-3 (CC3) promotes apoptosis by enhancing nuclear condensation, DNA fragmentation, and plasma membrane blebbing. Here, we describe an immunofluorescence assay that distinguishes between apoptosis and drug-induced DSBs by measuring coexpression of γH2AX and membrane blebbing-associated CC3 to indicate apoptosis, and γH2AX in the absence of CC3 blebbing to indicate drug-induced DNA damage. These markers were examined in xenograft models following treatment with topotecan, cisplatin, or birinapant. A topotecan regimen conferring tumor regression induced tumor cell DSBs resulting from both apoptosis and direct DNA damage. In contrast, a cisplatin regimen yielding tumor growth delay, but not regression, resulted in tumor cell DSBs due solely to direct DNA damage. MDA-MB-231 xenografts exposed to birinapant, which promotes apoptosis but does not directly induce DSBs, exhibited dose-dependent increases in colocalized γH2AX/CC3 blebbing in tumor cells. Clinical feasibility was established using formalin-fixed, paraffin-embedded biopsies from a canine cancer clinical trial; γH2AX/CC3 colocalization analysis revealed apoptosis induction by two novel indenoisoquinoline topoisomerase I inhibitors, which was consistent with pathologist-assessed apoptosis and reduction of tumor volume. This assay is ready for use in clinical trials to elucidate the mechanism of action of investigational agents and combination regimens intended to inflict DNA damage, apoptotic cell death, or both.

6.
J Biomol Screen ; 19(2): 242-52, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24051224

ABSTRACT

We have completed a robust high-content imaging screen for novel estrogen receptor α (ERα) agonists and antagonists by quantitation of cytoplasmic to nuclear translocation of an estrogen receptor chimera in 384-well plates. The screen was very robust, with Z' values >0.7 and coefficients of variation (CV) <5%. The screen utilized a stably transfected green fluorescent protein-tagged glucocorticoid/estrogen receptor (GFP-GRER) chimera, which consisted of the N-terminus of the glucocorticoid receptor fused to the human ERα ligand binding domain. The GFP-GRER exhibited cytoplasmic localization in the absence of ERα ligands and translocated to the nucleus in response to stimulation with ERα agonists and antagonists. The BD Pathway 435 imaging system was used for image acquisition, analysis of translocation dynamics, and cytotoxicity measurements. We screened 224,891 samples from our synthetic, pure natural product libraries, prefractionated natural product extracts library, and crude natural product extracts library, which produced a 0.003% hit rate. In addition to identifying several known ER ligands, five compounds were discovered that elicited significant activity in the screen. Transactivation potential studies demonstrated that two hit compounds behave as agonists, while three compounds elicited antagonist activity in MCF-7 cells.


Subject(s)
Cell Nucleus/metabolism , Cytoplasm/metabolism , Estrogen Receptor alpha/isolation & purification , Ligands , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/antagonists & inhibitors , Green Fluorescent Proteins/chemistry , Humans , MCF-7 Cells , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
7.
J Biomed Biotechnol ; 2011: 868095, 2011.
Article in English | MEDLINE | ID: mdl-21234371

ABSTRACT

Epigenetic pathways help control the expression of genes. In cancer and other diseases, aberrant silencing or overexpression of genes, such as those that control cell growth, can greatly contribute to pathogenesis. Access to these genes by the transcriptional machinery is largely mediated by chemical modifications of DNA or histones, which are controlled by epigenetic enzymes, making these enzymes attractive targets for drug discovery. Here we describe the characterization of a locus derepression assay, a fluorescence-based mammalian cellular system which was used to screen the NCI structural diversity library for novel epigenetic modulators using an automated imaging platform. Four structurally unique compounds were uncovered that, when further investigated, showed distinct activities. These compounds block the viability of lung cancer and melanoma cells, prevent cell cycle progression, and/or inhibit histone deacetylase activity, altering levels of cellular histone acetylation.


Subject(s)
Antineoplastic Agents/analysis , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor/methods , Epigenesis, Genetic/drug effects , National Cancer Institute (U.S.) , Neoplasms/pathology , Small Molecule Libraries/analysis , Small Molecule Libraries/pharmacology , Animals , Biological Assay , Cell Line, Tumor , Green Fluorescent Proteins/metabolism , Humans , Mice , Mice, Transgenic , Neoplasms/drug therapy , Transcription, Genetic/drug effects , United States
8.
Methods Enzymol ; 414: 21-36, 2006.
Article in English | MEDLINE | ID: mdl-17110184

ABSTRACT

Epigenetic processes have gained a great amount of attention in recent years, particularly due to the influence they exert on gene transcription. Several human diseases, including cancer, have been linked to aberrant epigenetic pathways. Consequently, the cellular enzymes that mediate epigenetic events, including histone deacetylases and DNA methyltransferases, have become prime molecular targets for therapeutic intervention. The effective and specific chemical inhibition of these activities is a top priority in cancer research and appears to have therapeutic potential. This chapter describes the development of mammalian cell-based fluorescent assays to screen for epigenetic modulators using an innovative combination of approaches. Detailed protocols for the use of the assays in drug screens, as well as for the initial characterization of hits, are provided. Furthermore, options for evaluating the mechanism of action of these compounds are presented and principles to govern the choice of hit compounds for the development of leads are discussed.


Subject(s)
Epigenesis, Genetic , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Animals , Cell Culture Techniques/methods , Cell Line, Tumor , Dimethyl Sulfoxide/chemistry , Gene Expression Regulation, Enzymologic , Humans , Mice , Transcription, Genetic
9.
J Steroid Biochem Mol Biol ; 97(4): 307-21, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16162406

ABSTRACT

We have developed a new mammalian cell-based assay to screen for ligands of the estrogen receptor. A fluorescently tagged chimera between the glucocorticoid and the estrogen receptors, unlike the constitutively nuclear estrogen receptor, is cytoplasmic in the absence of hormone and translocates to the nucleus in response to estradiol. The chimera maintains specificity for estrogen receptor alpha ligands and does not show cross-reactivity with other steroids, providing a clean system for drug discovery. Natural and synthetic estrogen receptor alpha agonists as well as phytoestrogens effectively translocate the receptor to the nucleus in a dose-dependent manner. Antagonists of the estrogen receptor can also transmit the structural signals that result in receptor nuclear translocation. The potency and efficacy of high-affinity ligands can be evaluated in our system by measuring the nuclear translocation of the fluorescently labeled receptor in response to increasing ligand concentrations. The chimera is transcriptionally competent on transient and replicating templates, and is inhibited by estrogen receptor antagonists. Interestingly, the nucleoplasmic mobility of the chimera, determined by FRAP analysis, is faster than that of the wild type estrogen receptor, and the chimera is resistant to ICI immobilization. The translocation properties of this chimera can be utilized in high content screens for novel estrogen receptor modulators.


Subject(s)
Active Transport, Cell Nucleus , Biochemistry/methods , Receptors, Estrogen/chemistry , Recombinant Fusion Proteins/chemistry , Animals , COS Cells , Cell Line , Cells, Cultured , Chlorocebus aethiops , Cytoplasm/metabolism , Dexamethasone/pharmacology , Estradiol/metabolism , Fluorescent Dyes/pharmacology , Green Fluorescent Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Humans , Immunoprecipitation , Ligands , Mice , Microscopy, Fluorescence , NIH 3T3 Cells , Protein Binding , Protein Transport , Receptors, Glucocorticoid/chemistry , Steroids/chemistry , Tamoxifen/pharmacology , Time Factors , Transcription, Genetic , Transcriptional Activation , Transfection
10.
Arch Biochem Biophys ; 406(2): 209-21, 2002 Oct 15.
Article in English | MEDLINE | ID: mdl-12361709

ABSTRACT

The cytosolic Ah receptor (AhR) heterocomplex consists of one molecule of the AhR, a 90-kDa heat shock protein (Hsp90) dimer, and one molecule of the hepatitis B virus X-associated protein 2 (XAP2). Serine residues 43,53,131-2, and 329 on XAP2-FLAG were identified as putative phosphorylation sites using site-directed mutagenesis followed by two-dimensional phosphopeptide mapping analysis. Protein kinase CK2 (CK2) was identified as the 45-kDa kinase from COS 1 cell or liver extracts that was responsible for phosphorylation of serine 43 in the XAP2 peptide 39-57. Loss of phosphorylation at any or all of the serine residues did not significantly affect the ability of XAP2-FLAG to bind to the murine AhR in rabbit reticulocyte lysate or Hsp90 in COS-1 cells. Furthermore, all of these serine mutants were able to sequester murine AhR-YFP into the cytoplasm as well as wild-type XAP2. YFP-XAP2 S53A was unable to enter the nucleus, indicating a potential role of phosphorylation in nuclear translocation of XAP2.


Subject(s)
Hepatitis B virus/metabolism , Proteins/metabolism , Serine , Alanine , Amino Acid Sequence , Amino Acid Substitution , Animals , COS Cells , Chlorocebus aethiops , Intracellular Signaling Peptides and Proteins , Molecular Sequence Data , Mutagenesis, Site-Directed , Peptide Fragments/isolation & purification , Peptide Fragments/metabolism , Peptide Mapping , Phosphopeptides/chemistry , Phosphorylation , Proteins/chemistry , Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...