Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Microb Genom ; 4(9)2018 09.
Article in English | MEDLINE | ID: mdl-30142055

ABSTRACT

Genomic instability, although frequently deleterious, is also an important mechanism for microbial adaptation to environmental change. Although widely studied in bacteria, in archaea the effect of genomic instability on organism phenotypes and fitness remains unclear. Here we use DNA segmentation methods to detect and quantify genome-wide copy number variation (CNV) in large compendia of high-throughput datasets in a model archaeal species, Halobacterium salinarum. CNV hotspots were identified throughout the genome. Some hotspots were strongly associated with changes in gene expression, suggesting a mechanism for phenotypic innovation. In contrast, CNV hotspots in other genomic loci left expression unchanged, suggesting buffering of certain phenotypes. The correspondence of CNVs with gene expression was validated with strain- and condition-matched transcriptomics and DNA quantification experiments at specific loci. Significant correlation of CNV hotspot locations with the positions of known insertion sequence (IS) elements suggested a mechanism for generating genomic instability. Given the efficient recombination capabilities in H. salinarum despite stability at the single nucleotide level, these results suggest that genomic plasticity mediated by IS element activity can provide a source of phenotypic innovation in extreme environments.


Subject(s)
DNA Copy Number Variations , Halobacterium salinarum/genetics , Transcriptome , Chromosome Breakpoints , Chromosome Deletion , Chromosomes, Archaeal , Gene Expression Profiling , Gene Expression Regulation , Halobacterium salinarum/metabolism , Interspersed Repetitive Sequences , Oligonucleotide Array Sequence Analysis , Plasmids/genetics , Workflow
2.
mBio ; 6(5): e00649-15, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26350964

ABSTRACT

UNLABELLED: In all three domains of life, organisms use nonspecific DNA-binding proteins to compact and organize the genome as well as to regulate transcription on a global scale. Histone is the primary eukaryotic nucleoprotein, and its evolutionary roots can be traced to the archaea. However, not all archaea use this protein as the primary DNA-packaging component, raising questions regarding the role of histones in archaeal chromatin function. Here, quantitative phenotyping, transcriptomic, and proteomic assays were performed on deletion and overexpression mutants of the sole histone protein of the hypersaline-adapted haloarchaeal model organism Halobacterium salinarum. This protein is highly conserved among all sequenced haloarchaeal species and maintains hallmark residues required for eukaryotic histone functions. Surprisingly, despite this conservation at the sequence level, unlike in other archaea or eukaryotes, H. salinarum histone is required to regulate cell shape but is not necessary for survival. Genome-wide expression changes in histone deletion strains were global, significant but subtle in terms of fold change, bidirectional, and growth phase dependent. Mass spectrometric proteomic identification of proteins from chromatin enrichments yielded levels of histone and putative nucleoid-associated proteins similar to those of transcription factors, consistent with an open and transcriptionally active genome. Taken together, these data suggest that histone in H. salinarum plays a minor role in DNA compaction but important roles in growth-phase-dependent gene expression and regulation of cell shape. Histone function in haloarchaea more closely resembles a regulator of gene expression than a chromatin-organizing protein like canonical eukaryotic histone. IMPORTANCE: Histones comprise the major protein component of eukaryotic chromatin and are required for both genome packaging and global regulation of expression. The current paradigm maintains that archaea whose genes encode histone also use these proteins to package DNA. In contrast, here we demonstrate that the sole histone encoded in the genome of the salt-adapted archaeon Halobacterium salinarum is both unessential and unlikely to be involved in DNA compaction despite conservation of residues important for eukaryotic histones. Rather, H. salinarum histone is required for global regulation of gene expression and cell shape. These data are consistent with the hypothesis that H. salinarum histone, strongly conserved across all other known salt-adapted archaea, serves a novel role in gene regulation and cell shape maintenance. Given that archaea possess the ancestral form of eukaryotic histone, this study has important implications for understanding the evolution of histone function.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Archaeal , Halobacterium salinarum/cytology , Halobacterium salinarum/genetics , Histones/metabolism , Gene Deletion , Gene Expression , Gene Expression Profiling , Histones/genetics , Phenotype , Proteome/analysis
SELECTION OF CITATIONS
SEARCH DETAIL