Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 15(13): 2768-2783, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28272610

ABSTRACT

Preliminary studies into the use of ring-closing metathesis (RCM) in a convergent approach for the total synthesis of bryostatins are described. An ester that would have provided an advanced intermediate for a synthesis of a 20-deoxybryostatin by a RCM was prepared from an unsaturated acid and alcohol corresponding to the C1-C16 and C17-C27 fragments. However, studies of the formation of the C16-C17 double-bond by RCM were not successful and complex mixtures of products were obtained. To provide an insight into factors that may be involved in hindering RCM in this system, a slightly simplified C1-C16 acid and modified C17-C25 alcohols were prepared and their use for the synthesis of analogues of bryostatins was investigated. Although only low yields were obtained, it appeared that macrolides analogous to the bryostatins can be prepared by RCM, using the Grubbs II catalyst, if the precursors lack the two methyl groups at C18. RCM was not observed, however, for substrates in which these methyl groups were present.


Subject(s)
Bryostatins/chemical synthesis , Bryostatins/chemistry , Molecular Structure
2.
Org Biomol Chem ; 14(40): 9650-9681, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27714213

ABSTRACT

The development of a synthesis of the C1-C16 fragment of bryostatins in which the key step is a stereoselective oxy-Michael reaction used to assemble the cis-2,6-disubstituted tetrahydropyran with the exocyclic alkene already installed, is described. Following early work using Stille reactions to prepare precursors for oxy-Michael reactions, a more efficient route was devised based on a ketophosphonate-aldehyde condensation to prepare the key dienone. Synthesis of the aldehyde required for the ketophosphonate condensation involved the highly stereoselective addition of a diorganocuprate derived from allylmagnesium bromide and copper(i) iodide to the methyl 5-hydroxyhex-2-ynoate prepared by ring-opening of a protected glycidol using lithiated methyl propiolate. Ester reduction, selective alcohol protection and oxidative cleavage of the terminal double bond gave the required aldehyde. The ketophosphonate was prepared in 13 steps from (R)-pantolactone using a synthesis based on a chelation controlled aldol condensation and an anti-selective reduction of a 3-hydroxyketone. Following the ketophosphonate-aldehyde reaction, selective deprotection followed by treatment with base effected the oxy-Michael reaction that gave the cis-2,6-disubstituted tetrahydropyran via thermodynamic control. Subsequent functional group manipulation led to the synthesis of a hydroxy ester that corresponded to the C1-C16 fragment of the bryostatins in 23 steps from (R)-pantolactone. The synthesis was repeated using slightly different protecting groups for a study of a ring-closing metathesis approach to the bryostatins.

3.
Chimia (Aarau) ; 68(7-8): 522-30, 2014.
Article in English | MEDLINE | ID: mdl-25437394

ABSTRACT

Dienones obtained from the facile dearomatization of phenols, can be further transformed to semi-benzenes prone to rearomatize in clean, but sometimes unexpected, fashion. Over a hundred years ago, K. von Auwers found that adding Grignards on dienones would lead spontaneously to subsequent dehydration and a novel aromatizing rearrangement. This reaction was ignored for 50 years before Melvin Newman re-investigated these findings, studied the mechanism, and developed variations on the same theme. Since then, despite the tremendous potential of the reactions, those studies were only rarely mentioned, before finally falling into oblivion. This review aims to provide the reader with a detailed history and comprehensive bibliography of the von Auwers rearrangement, some of its synthetic applications, and new unpublished material in the hope to open new perspectives on this forgotten reaction.

4.
Chimia (Aarau) ; 67(1-2): 71-7, 2013.
Article in English | MEDLINE | ID: mdl-23484940

ABSTRACT

Based on the premise that, for a given class of related chemical compounds, there exists a relationship between their structure and their properties (i.e. activity), it is demonstrated herein that an elementary algorithm can readily identify, with simplistic models and without recourse to molecular descriptors, the most active compounds of a categorical, pre-defined space of molecules. In an actual case study using public experimental data on two thousand related molecules, D-optimal design of experiments initially identified the best subset of compounds considered for the construction of simple models. Subsequently, predictions of a first generation of best candidates, their preparation and inclusion into a new data set, allowed the exploration of the most active region within the space of interest. Survival of the algorithm by iterative generations ensured that most of the best (active) compounds had been prepared. A certain partial survival condition, followed by a complete termination criterion, helped to minimize the total amount of compounds to prepare while identifying the n best individuals of the matrix.


Subject(s)
Algorithms , Drug Discovery , Linear Models
5.
Bioorg Med Chem ; 21(1): 127-34, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23218777

ABSTRACT

A novel class of experimental fungicides has been discovered, which consists of special tetrasubstituted imidazoles. They are highly active against important phytopathogens, such as Botrytis cinerea (grey mould), Uncinula necator (grape powdery mildew), Mycosphaerella graminicola (wheat leaf blotch) and Alternaria solani (potato and tomato early blight). Their fungicidal efficacy is due to their ability to promote fungal tubulin polymerization, which leads to a disruption of microtubule dynamics. These imidazoles are five-membered ring analogs of similar substituted triazolopyrimidines and pyridazines with the same mode of action. A concise four-step synthesis route has been used to prepare them from commercially available starting materials.


Subject(s)
Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Plant Diseases/microbiology , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology , Alternaria/drug effects , Ascomycota/drug effects , Botrytis/drug effects , Fungicides, Industrial/chemical synthesis , Imidazoles/chemical synthesis , Plant Proteins/metabolism , Plants/metabolism , Plants/microbiology , Tubulin/metabolism , Tubulin Modulators/chemical synthesis
6.
Bioorg Med Chem ; 20(9): 2803-10, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22494843

ABSTRACT

Special tetrasubstituted pyridazines are potent fungicides by promoting the tubulin polymerisation, hereby disrupting the microtubule dynamics in the fungus. They are monocyclic analogs of similar substituted triazolopyrimidines and pyridopyrazines with the same mode of action. The fungicidal activity of these pyridazines was evaluated against the plant pathogens Botrytis cinerea (grey mould), Mycosphaerella graminicola (wheat leaf blotch) and Alternaria solani (potato and tomato early blight). Structure-activity relationship studies revealed the importance of a methyl and a chlorine substituent next to both ring nitrogen atoms and two aryl or heteroaryl groups in the other two pyridazine positions.


Subject(s)
Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Ascomycota/drug effects , Botrytis/drug effects , Pyridazines/chemistry , Pyridazines/pharmacology , Tubulin Modulators/chemical synthesis , Animals , Antifungal Agents/chemistry , Pyridazines/chemical synthesis , Structure-Activity Relationship , Swine , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology
7.
Bioconjug Chem ; 19(8): 1707-18, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18642865

ABSTRACT

The self-immolative spacer para-aminobenzyl alcohol (PABA) was used as a key component in the design of new protease-sensitive fluorogenic probes whose parent phenol-based fluorophore is released through an enzyme-initiated domino reaction. First, the conjugation of the phenylacetyl moiety to 7-hydroxycoumarin (umbelliferone) and 7-hydroxy-9 H-(9,9-dimethylacridin-2-one) (DAO) by means of the heterobifunctional PABA linker has led to pro-fluorophores 6a and 6d whose enzyme activation by penicillin amidase was demonstrated. The second part of this study was devoted to the extension of this latent fluorophore strategy to the caspase-3 protease, a key mediator of apoptosis in mammalian cells. Fluorogenic caspase-3 substrates 11 and 13 derived from umbelliferone and DAO, respectively, were prepared. It was demonstrated that pro-fluorophore 11 is a sensitive fluorimetric reagent for the detection of this cysteine protease. Furthermore, in vitro assays with fluorogenic probe 13 showed a deleterious effect of biological thiols on fluorescence of the released acridinone fluorophore DAO that, to our knowledge, had not been reported until now.


Subject(s)
4-Aminobenzoic Acid/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , Peptide Hydrolases/metabolism , Caspase 3/metabolism , Color , Fluorescence , Fluorescent Dyes/chemistry , Humans , Kinetics , Penicillin Amidase/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL