Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 23(14): 3186-3193, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37325906

ABSTRACT

Potential applications of nanomaterials range from electronics to environmental technology, thus a better understanding of their manufacturing and manipulation is of paramount importance. The present study demonstrates a methodology for the use of metallic nanomaterials as reactants to examine nanoalloying in situ within a transmission electron microscope. The method is further utilised as a starting point of a metallurgical toolbox, e.g. to study subsequent alloying of materials by using a nanoscale-sized chemical reactor for nanometallurgy. Cu nanowires and Au nanoparticles are used for alloying with pure Al, which served as the matrix material in the form of electron transparent lamellae. The results showed that both the Au and Cu nanomaterials alloyed when Al was melted in the transmission electron microscope. However, the eutectic reaction was more pronounced in the Al-Cu system, as predicted from the phase diagram. Interestingly, the mixing of the alloying agents occurred independently of the presence of an oxide layer surrounding the nanowires, nanoparticles, or the Al lamellae while performing the experiments. Overall, these results suggest that transmission electron microscope-based in situ melting and alloying is a valuable lab-on-a-chip technique to study the metallurgical processing of nanomaterials for the future development of advanced nanostructured materials.

2.
J Therm Anal Calorim ; 148(3): 651-662, 2023.
Article in English | MEDLINE | ID: mdl-36744048

ABSTRACT

Eutectic AlSi12, commonly used in casting and in additive manufacturing, is investigated with Fast Differential Scanning Calorimetry to determine the impact of different cooling rates from the liquid state upon the apparent specific heat capacity on subsequent heating. A heat flow correction strategy is developed and refined for the reliable and precise measurement of sample heat flow using chip sensors and assessed by the evaluation of results on pure (99.999%) aluminium. That strategy is then applied to the study of the AlSi12 eutectic alloy, and rate-dependent perturbations in the measured apparent specific heat capacity are discussed in terms of Si supersaturation and precipitation. Several cooling rates were implemented from - 100 to - 30,000 K s-1, and subsequent heating ranged from + 1000 to + 30,000 K s-1. After rapid cooling, a drop in AlSi12 apparent specific heat capacity is found on heating above ~ 400 °C; even at rates of + 10,000 K s-1, a result which has high relevance in metal additive manufacturing where similarly fast temperature cycles are involved. The Literature data, temperature modulated DSC and CALPHAD simulations on the heat capacity of AlSi12 are used to provide comparative context to the results from Fast Differential Scanning Calorimetry.

3.
Materials (Basel) ; 14(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652599

ABSTRACT

Microelectromechanical systems (MEMS) are currently supporting ground-breaking basic research in materials science and metallurgy as they allow in situ experiments on materials at the nanoscale within electron microscopes in a wide variety of different conditions such as extreme materials dynamics under ultrafast heating and quenching rates as well as in complex electro-chemical environments. Electron-transparent sample preparation for MEMS e-chips remains a challenge for this technology as the existing methodologies can introduce contaminants, thus disrupting the experiments and the analysis of results. Herein we introduce a methodology for simple and fast electron-transparent sample preparation for MEMS e-chips without significant contamination. The quality of the samples as well as their performance during a MEMS e-chip experiment in situ within an electron microscope are evaluated during a heat treatment of a crossover AlMgZn(Cu) alloy.

4.
Materials (Basel) ; 13(11)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512699

ABSTRACT

This study reports on the effect of interrupted quenching on the microstructure and mechanical properties of plates made of the AlZnMg(Cu) alloy AA7050. Rapid cooling from the solution heat treatment temperature is interrupted at temperatures between 100 and 200 °C and continued with a very slow further cooling to room temperature. The final material's condition is achieved without or with subsequent artificial ageing. The results show that an improvement in the strength-toughness trade-off can be obtained by using this method. Interrupted quenching at 125 °C with peak artificial ageing leads to a yield strength increase of 27 MPa (538 MPa to 565 MPa) compared to the reference material at the same fracture toughness level. A further special case is the complete omission of an artificial ageing treatment with interrupted quenching at 200 °C. This heat treatment exhibits an 20% increase in fracture toughness (35 to 42 MPa m-1/2) while retaining a sufficient yield strength of 512 MPa for industrial applications. A detailed characterization of the relevant microstructural parameters like present phases, phase distribution and precipitate-free zones is performed using transmission electron microscopy and atom probe tomography.

5.
Nanomaterials (Basel) ; 10(3)2020 Mar 08.
Article in English | MEDLINE | ID: mdl-32182652

ABSTRACT

Motivated by often contradictory literature reports on the dependence of the surface energy of gold nanoparticles on the variety of its size and shape, we performed an atomistic study combining molecular mechanics and ab initio calculations. We show that, in the case of Au nanocubes, their surface energy converges to a value for ( 0 0 1 ) facets of bulk crystals. A fast convergence to a single valued surface energy is predicted also for nanospheres. However, the value of the surface energy is larger in this case than that of any low-index surface facet of bulk Au crystal. This fact can be explained by the complex structure of the surface with an extensive number of broken bonds due to edge and corner atoms. A similar trend was obtained also for the case of cuboctahedrons. Since the exact surface area of the nanoparticles is an ill-defined quantity, we have introduced the surface-induced excess energy and discuss this quantity as a function of (i) number of atoms forming the nano-object or (ii) characteristic size of the nano-object. In case (i), a universal power-law behaviour was obtained independent of the nanoparticle shape. Importantly, we show that the size-dependence of the surface is hugely reduced if the surface area correction is considered due to its expansion by the electronic cloud, a phenomenon specifically important for small nanoparticles.

6.
Nat Commun ; 10(1): 4746, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31628320

ABSTRACT

A key question in materials science is how fast properties evolve, which relates to the kinetics of phase transformations. In metals, kinetics is primarily connected to diffusion, which for substitutional elements is enabled via mobile atomic-lattice vacancies. In fact, non-equilibrium vacancies are often required for structural changes. Rapid quenching of various important alloys, such as Al- or Mg-alloys, results for example in natural aging, i.e. slight movements of solute atoms in the material, which significantly alter the material properties. In this study we demonstrate a size effect of natural aging in an AlMgSi alloy via atom probe tomography with near-atomic image resolution. We show that non-equilibrium vacancy diffusional processes are generally stopped when the sample size reaches the nanometer scale. This precludes clustering and natural aging in samples below a certain size and has implications towards the study of non-equilibrium diffusion and microstructural changes via microscopy techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...