Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Comput Struct Biotechnol J ; 23: 2097-2108, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38803516

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a rare autosomal dominant genetic disorder. Although DM1 is primarily characterized by progressive muscular weakness, it exhibits many multisystemic manifestations, such as cognitive deficits, cardiac conduction abnormalities, and cataracts, as well as endocrine and reproductive issues. Additionally, the gastrointestinal (GI) tract is frequently affected, encompassing the entire digestive tract. However, the underlying causes of these GI symptoms remain uncertain, whether it is biomechanical problems of the intestine, involvement of bacterial communities, or both. The primary objective of this study is to investigate the structural changes in the gut microbiome of DM1 patients. To achieve this purpose, 35 patients with DM1 were recruited from the DM-Scope registry of the neuromuscular clinic in the Saguenay-Lac-St-Jean region of the province of Québec, Canada. Stool samples from these 35 patients, including 15 paired samples with family members living with them as controls, were collected. Subsequently, these samples were sequenced by 16S MiSeq and were analyzed with DADA2 to generate taxonomic signatures. Our analysis revealed that the DM1 status correlated with changes in gut bacterial community. Notably, there were differences in the relative abundance of Bacteroidota, Euryarchaeota, Fusobacteriota, and Cyanobacteria Phyla compared to healthy controls. However, no significant shift in gut microbiome community structure was observed between DM1 phenotypes. These findings provide valuable insights into how the gut bacterial community, in conjunction with biomechanical factors, could potentially influence the gastrointestinal tract of DM1 patients.

2.
Sci Transl Med ; 16(739): eabn8529, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507466

ABSTRACT

Impaired skeletal muscle stem cell (MuSC) function has long been suspected to contribute to the pathogenesis of muscular dystrophy (MD). Here, we showed that defects in the endothelial cell (EC) compartment of the vascular stem cell niche in mouse models of Duchenne MD, laminin α2-related MD, and collagen VI-related myopathy were associated with inefficient mobilization of MuSCs after tissue damage. Using chemoinformatic analysis, we identified the 13-amino acid form of the peptide hormone apelin (AP-13) as a candidate for systemic stimulation of skeletal muscle ECs. Systemic administration of AP-13 using osmotic pumps generated a pro-proliferative EC-rich niche that supported MuSC function through angiocrine factors and markedly improved tissue regeneration and muscle strength in all three dystrophic mouse models. Moreover, EC-specific knockout of the apelin receptor led to regenerative defects that phenocopied key pathological features of MD, including vascular defects, fibrosis, muscle fiber necrosis, impaired MuSC function, and reduced force generation. Together, these studies provide in vivo proof of concept that enhancing endogenous skeletal muscle repair by targeting the vascular niche is a viable therapeutic avenue for MD and characterized AP-13 as a candidate for further study for the systemic treatment of MuSC dysfunction.


Subject(s)
Muscular Dystrophy, Duchenne , Stem Cell Niche , Mice , Animals , Apelin/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Signal Transduction
3.
Eur J Pediatr ; 183(5): 1989-2002, 2024 May.
Article in English | MEDLINE | ID: mdl-38416257

ABSTRACT

Individuals born preterm present lower exercise capacity. Along with the cardiopulmonary responses and activity level, muscle strength is a key determinant of exercise capacity. This systematic review aimed to summarize the current knowledge on the impact of preterm birth on skeletal muscle mass and function across the lifespan. The databases PubMed, MEDLINE, EBM, Embase, CINAHL Plus, Global Index Medicus, and Google Scholar were searched using keywords and MeSH terms related to skeletal muscle, preterm birth, and low birth weight. Two independent reviewers undertook study selection, data extraction, and quality appraisal using Covidence review management. Data were pooled to estimate the prematurity effect on muscle mass and function using the R software. From 4378 studies retrieved, 132 were full-text reviewed and 25 met the inclusion/exclusion criteria. Five studies presented a low risk of bias, and 5 had a higher risk of bias due to a lack of adjustment for confounding factors and presenting incomplete outcomes. Meta-analyses of pooled data from homogenous studies indicated a significant reduction in muscle thickness and jump test (muscle power) in individuals born preterm versus full-term with standardized mean difference and confidence interval of - 0.58 (0.27, 0.89) and - 0.45 (0.21, 0.69), respectively.    Conclusion: Overall, this systematic review summarizing the existing literature on the impact of preterm birth on skeletal muscle indicates emerging evidence that individuals born preterm, display alteration in the development of their skeletal muscle mass and function. This work also highlights a clear knowledge gap in understanding the effect of preterm birth on skeletal muscle development. What is Known: • Preterm birth, which occurs at a critical time of skeletal muscle development and maturation, impairs the development of different organs and tissues leading to a higher risk of comorbidities such as cardiovascular diseases. • Preterm birth is associated with reduced exercise capacity. What is New: • Individuals born preterm display alterations in muscle mass and function compared to individuals born at term from infancy to adulthood. • There is a need to develop preventive or curative interventions to improve skeletal muscle health in preterm-born individuals.


Subject(s)
Muscle Strength , Muscle, Skeletal , Premature Birth , Humans , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Infant, Newborn , Muscle Strength/physiology , Infant, Premature/growth & development
5.
Front Cell Dev Biol ; 11: 1187253, 2023.
Article in English | MEDLINE | ID: mdl-37645248

ABSTRACT

Introduction: Muscle wasting in Duchenne Muscular Dystrophy is caused by myofiber fragility and poor regeneration that lead to chronic inflammation and muscle replacement by fibrofatty tissue. Our recent findings demonstrated that Resolvin-D2, a bioactive lipid derived from omega-3 fatty acids, has the capacity to dampen inflammation and stimulate muscle regeneration to alleviate disease progression. This therapeutic avenue has many advantages compared to glucocorticoids, the current gold-standard treatment for Duchenne Muscular Dystrophy. However, the use of bioactive lipids as therapeutic drugs also faces many technical challenges such as their instability and poor oral bioavailability. Methods: Here, we explored the potential of PSB-KD107, a synthetic agonist of the resolvin-D2 receptor Gpr18, as a therapeutic alternative for Duchenne Muscular Dystrophy. Results and discussion: We showed that PSB-KD107 can stimulate the myogenic capacity of patient iPSC-derived myoblasts in vitro. RNAseq analysis revealed an enrichment in biological processes related to fatty acid metabolism, lipid biosynthesis, small molecule biosynthesis, and steroid-related processes in PSB-KD107-treated mdx myoblasts, as well as signaling pathways such as Peroxisome proliferator-activated receptors, AMP-activated protein kinase, mammalian target of rapamycin, and sphingolipid signaling pathways. In vivo, the treatment of dystrophic mdx mice with PSB-KD107 resulted in reduced inflammation, enhanced myogenesis, and improved muscle function. The positive impact of PSB-KD107 on muscle function is similar to the one of Resolvin-D2. Overall, our findings provide a proof-of concept that synthetic analogs of bioactive lipid receptors hold therapeutic potential for the treatment of Duchenne Muscular Dystrophy.

6.
Nat Commun ; 14(1): 4033, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468473

ABSTRACT

Muscle stem cells, the engine of muscle repair, are affected in myotonic dystrophy type 1 (DM1); however, the underlying molecular mechanism and the impact on the disease severity are still elusive. Here, we show using patients' samples that muscle stem cells/myoblasts exhibit signs of cellular senescence in vitro and in situ. Single cell RNAseq uncovers a subset of senescent myoblasts expressing high levels of genes related to the senescence-associated secretory phenotype (SASP). We show that the levels of interleukin-6, a prominent SASP cytokine, in the serum of DM1 patients correlate with muscle weakness and functional capacity limitations. Drug screening revealed that the senolytic BCL-XL inhibitor (A1155463) can specifically remove senescent DM1 myoblasts by inducing their apoptosis. Clearance of senescent cells reduced the expression of SASP, which rescued the proliferation and differentiation capacity of DM1 myoblasts in vitro and enhanced their engraftment following transplantation in vivo. Altogether, this study identifies the pathogenic mechanism associated with muscle stem cell defects in DM1 and opens a therapeutic avenue that targets these defective cells to restore myogenesis.


Subject(s)
Myotonic Dystrophy , Satellite Cells, Skeletal Muscle , Humans , Myotonic Dystrophy/drug therapy , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Senotherapeutics , Muscle Fibers, Skeletal/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Muscle Development/genetics
7.
Elife ; 122023 06 07.
Article in English | MEDLINE | ID: mdl-37285284

ABSTRACT

In skeletal muscle, muscle stem cells (MuSC) are the main cells responsible for regeneration upon injury. In diseased skeletal muscle, it would be therapeutically advantageous to replace defective MuSCs, or rejuvenate them with drugs to enhance their self-renewal and ensure long-term regenerative potential. One limitation of the replacement approach has been the inability to efficiently expand MuSCs ex vivo, while maintaining their stemness and engraftment abilities. Herein, we show that inhibition of type I protein arginine methyltransferases (PRMTs) with MS023 increases the proliferative capacity of ex vivo cultured MuSCs. Single cell RNA sequencing (scRNAseq) of ex vivo cultured MuSCs revealed the emergence of subpopulations in MS023-treated cells which are defined by elevated Pax7 expression and markers of MuSC quiescence, both features of enhanced self-renewal. Furthermore, the scRNAseq identified MS023-specific subpopulations to be metabolically altered with upregulated glycolysis and oxidative phosphorylation (OxPhos). Transplantation of MuSCs treated with MS023 had a better ability to repopulate the MuSC niche and contributed efficiently to muscle regeneration following injury. Interestingly, the preclinical mouse model of Duchenne muscular dystrophy had increased grip strength with MS023 treatment. Our findings show that inhibition of type I PRMTs increased the proliferation capabilities of MuSCs with altered cellular metabolism, while maintaining their stem-like properties such as self-renewal and engraftment potential.


Subject(s)
Muscular Dystrophy, Duchenne , Satellite Cells, Skeletal Muscle , Animals , Mice , Muscle, Skeletal/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Cells, Cultured , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/metabolism , Protein-Arginine N-Methyltransferases/metabolism
8.
Sci Adv ; 9(26): eade6308, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37390204

ABSTRACT

Deleterious variants in N-acetylneuraminate pyruvate lyase (NPL) cause skeletal myopathy and cardiac edema in humans and zebrafish, but its physiological role remains unknown. We report generation of mouse models of the disease: NplR63C, carrying the human p.Arg63Cys variant, and Npldel116 with a 116-bp exonic deletion. In both strains, NPL deficiency causes drastic increase in free sialic acid levels, reduction of skeletal muscle force and endurance, slower healing and smaller size of newly formed myofibers after cardiotoxin-induced muscle injury, increased glycolysis, partially impaired mitochondrial function, and aberrant sialylation of dystroglycan and mitochondrial LRP130 protein. NPL-catalyzed degradation of sialic acid in the muscle increases after fasting and injury and in human patient and mouse models with genetic muscle dystrophy, demonstrating that NPL is essential for muscle function and regeneration and serves as a general marker of muscle damage. Oral administration of N-acetylmannosamine rescues skeletal myopathy, as well as mitochondrial and structural abnormalities in NplR63C mice, suggesting a potential treatment for human patients.


Subject(s)
N-Acetylneuraminic Acid , Zebrafish , Animals , Humans , Mice , Disease Models, Animal , Glycoproteins , Muscle, Skeletal , Pyruvates , Regeneration
9.
JACC Case Rep ; 5: 101690, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36636511

ABSTRACT

Percutaneous paravalvular leak closure seems a safe alternative to surgery in frail patients. However, it is a challenging procedure that should be tailored to each patient with optimal imaging guidance. Transesophageal echocardiography during the procedure and computed tomography scan/fluoroscopy fusion provide guidance for critical steps, such as PVL localization and crossing. (Level of Difficulty: Advanced.).

10.
Biosci Rep ; 43(1)2023 01 31.
Article in English | MEDLINE | ID: mdl-36538023

ABSTRACT

Skeletal muscle possesses a high plasticity and a remarkable regenerative capacity that relies mainly on muscle stem cells (MuSCs). Molecular and cellular components of the MuSC niche, such as immune cells, play key roles to coordinate MuSC function and to orchestrate muscle regeneration. An abnormal infiltration of immune cells and/or imbalance of pro- and anti-inflammatory cytokines could lead to MuSC dysfunctions that could have long lasting effects on muscle function. Different genetic variants were shown to cause muscular dystrophies that intrinsically compromise MuSC function and/or disturb their microenvironment leading to impaired muscle regeneration that contributes to disease progression. Alternatively, many acquired myopathies caused by comorbidities (e.g., cardiopulmonary or kidney diseases), chronic inflammation/infection, or side effects of different drugs can also perturb MuSC function and their microenvironment. The goal of this review is to comprehensively summarize the current knowledge on acquired myopathies and their impact on MuSC function. We further describe potential therapeutic strategies to restore MuSC regenerative capacity.


Subject(s)
Muscular Diseases , Humans , Muscular Diseases/genetics , Muscle, Skeletal/physiology , Myoblasts , Muscle Development/genetics , Inflammation
11.
Cell Rep ; 41(7): 111645, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36384129

ABSTRACT

Skeletal muscle is populated with a reservoir of quiescent muscle stem cells (MuSCs), which regenerate the tissue after injury. Here, we show that the adhesion G-protein-coupled receptor Gpr116 is essential for long-term maintenance of the MuSC pool. Quiescent MuSCs express high levels of Gpr116, which is rapidly downregulated upon MuSC activation. MuSCs deficient for Gpr116 exhibit progressive depletion over time and are defective in self-renewal. Adhesion G-protein-coupled receptors contain an agonistic peptide sequence, called the "Stachel" sequence, within their long N-terminal ectodomains. Stimulation of MuSCs with the GPR116 Stachel peptide delays MuSC activation and differentiation. Stachel peptide stimulation of GPR116 leads to strong interaction with ß-arrestins. Stimulation of GPR116 increases the nuclear localization of ß-arrestin1, where it interacts with cAMP response element binding protein to regulate gene expression. Altogether, we propose a model by which GPR116 maintains the MuSC pool via nuclear functions of ß-arrestin1.


Subject(s)
Muscle Fibers, Skeletal , Myoblasts , Myoblasts/metabolism , Receptors, G-Protein-Coupled/metabolism , Muscle, Skeletal/physiology , Peptides/metabolism
12.
Dis Model Mech ; 15(11)2022 11 01.
Article in English | MEDLINE | ID: mdl-36317486

ABSTRACT

A series of well-regulated cellular and molecular events result in the compartmentalization of the anterior foregut into the esophagus and trachea. Disruption of the compartmentalization process leads to esophageal atresia/tracheoesophageal fistula (EA/TEF). The cause of EA/TEF remains largely unknown. Therefore, to mimic the early development of the esophagus and trachea, we differentiated induced pluripotent stem cells (iPSCs) from EA/TEF patients, and iPSCs and embryonic stem cells from healthy individuals into mature three-dimensional esophageal organoids. CXCR4, SOX17 and GATA4 expression was similar in both patient-derived and healthy endodermal cells. The expression of the key transcription factor SOX2 was significantly lower in the patient-derived anterior foregut. We also observed an abnormal expression of NKX2.1 (or NKX2-1) in the patient-derived mature esophageal organoids. At the anterior foregut stage, RNA sequencing revealed the critical genes GSTM1 and RAB37 to be significantly lower in the patient-derived anterior foregut. We therefore hypothesize that a transient dysregulation of SOX2 and the abnormal expression of NKX2.1 in patient-derived cells could be responsible for the abnormal foregut compartmentalization.


Subject(s)
Esophageal Atresia , Induced Pluripotent Stem Cells , Tracheoesophageal Fistula , Humans , Esophageal Atresia/genetics , Esophageal Atresia/complications , Induced Pluripotent Stem Cells/metabolism , Tracheoesophageal Fistula/etiology , Tracheoesophageal Fistula/metabolism , SOXB1 Transcription Factors/genetics
13.
EMBO J ; 41(14): e110655, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35703167

ABSTRACT

Fate decisions in the embryo are controlled by a plethora of microenvironmental interactions in a three-dimensional niche. To investigate whether aspects of this microenvironmental complexity can be engineered to direct myogenic human-induced pluripotent stem cell (hiPSC) differentiation, we here screened murine cell types present in the developmental or adult stem cell niche in heterotypic suspension embryoids. We identified embryonic endothelial cells and fibroblasts as highly permissive for myogenic specification of hiPSCs. After two weeks of sequential Wnt and FGF pathway induction, these three-component embryoids are enriched in Pax7-positive embryonic-like myogenic progenitors that can be isolated by flow cytometry. Myogenic differentiation of hiPSCs in heterotypic embryoids relies on a specialized structural microenvironment and depends on MAPK, PI3K/AKT, and Notch signaling. After transplantation in a mouse model of Duchenne muscular dystrophy, embryonic-like myogenic progenitors repopulate the stem cell niche, reactivate after repeated injury, and, compared to adult human myoblasts, display enhanced fusion and lead to increased muscle function. Altogether, we provide a two-week protocol for efficient and scalable suspension-based 3D derivation of Pax7-positive myogenic progenitors from hiPSCs.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Cell Differentiation , Endothelial Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Muscle Development , Phosphatidylinositol 3-Kinases/metabolism , Stem Cell Niche
14.
J Cell Physiol ; 237(4): 2271-2287, 2022 04.
Article in English | MEDLINE | ID: mdl-35141958

ABSTRACT

The physiological functions and downstream effectors of the atypical mitogen-activated protein kinase extracellular signal-regulated kinase 3 (ERK3) remain to be characterized. We recently reported that mice expressing catalytically-inactive ERK3 (Mapk6KD/KD ) exhibit a reduced postnatal growth rate as compared to control mice. Here, we show that genetic inactivation of ERK3 impairs postnatal skeletal muscle growth and adult muscle regeneration after injury. Loss of MAPK-activated protein kinase 5 (MK5) phenocopies the muscle phenotypes of Mapk6KD/KD mice. At the cellular level, genetic or pharmacological inactivation of ERK3 or MK5 induces precocious differentiation of C2C12 or primary myoblasts, concomitant with MyoD activation. Reciprocally, ectopic expression of activated MK5 inhibits myogenic differentiation. Mechanistically, we show that MK5 directly phosphorylates FoxO3, promoting its degradation and reducing its association with MyoD. Depletion of FoxO3 rescues in part the premature differentiation of C2C12 myoblasts observed upon inactivation of ERK3 or MK5. Our findings reveal that ERK3 and its substrate MK5 act in a linear signaling pathway to control postnatal myogenic differentiation.


Subject(s)
Forkhead Box Protein O3/metabolism , Signal Transduction , Animals , Intracellular Signaling Peptides and Proteins , Mice , Mitogen-Activated Protein Kinase 6/metabolism , Muscles , Protein Serine-Threonine Kinases/metabolism
15.
Curr Protoc ; 2(1): e356, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35085428

ABSTRACT

Muscular dystrophies are caused by genetic variants in genes encoding for proteins important for muscle structure or function, leading to a loss of muscle integrity and muscle wasting. To this day, no cure has been found for these diseases. Different therapeutic approaches are under intensive investigation. Cellular therapy has been extensively studied for diseases such as Duchenne Muscular Dystrophy, a debilitating disease caused by a mutation in the DMD gene, encoding for the dystrophin protein. Healthy myogenic cells transplanted into dystrophic muscles have the potential to engraft at long-term and fuse to donate their nuclei to the dystrophin-deficient myofibers, thereby restoring normal gene expression. Despite promising preclinical studies, the clinical trials had limited success so far due to many technical limitations. The recent technological advances in induced-pluripotent stem cells and genome editing opened new opportunities in this field. One of the keys to efficiently translate these new technologies into clinical benefits is to use relevant endpoints for preclinical studies. Considering that dystrophic muscles are susceptible to contraction-induced injury, the assessment of their resistance to repeated eccentric contractions is an optimal outcome to evaluate their functional recovery following cell transplantation. This protocol describes the procedure to generate induced-pluripotent stem cell-derived myoblasts, transplant these cells into skeletal muscle of immunosuppressed dystrophic mice, and assess muscle function in situ by measuring the resistance of the transplanted muscle to repeated eccentric contractions. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Generation of hiPSC-derived myoblasts. Basic Protocol 2: Transplantation of hiPSC-derived myoblasts in skeletal muscle of dystrophic mice. Basic Protocol 3: Assessment of muscle function in situ.


Subject(s)
Induced Pluripotent Stem Cells , Muscular Dystrophy, Duchenne , Animals , Mice , Mice, Inbred mdx , Muscle, Skeletal , Muscular Dystrophy, Duchenne/genetics , Myoblasts
16.
Open Biol ; 11(12): 210110, 2021 12.
Article in English | MEDLINE | ID: mdl-34875199

ABSTRACT

Skeletal muscle possesses a remarkable regenerative capacity that relies on the activity of muscle stem cells, also known as satellite cells. The presence of non-myogenic cells also plays a key role in the coordination of skeletal muscle regeneration. Particularly, fibro-adipogenic progenitors (FAPs) emerged as master regulators of muscle stem cell function and skeletal muscle regeneration. This population of muscle resident mesenchymal stromal cells has been initially characterized based on its bi-potent ability to differentiate into fibroblasts or adipocytes. New technologies such as single-cell RNAseq revealed the cellular heterogeneity of FAPs and their complex regulatory network during muscle regeneration. In acute injury, FAPs rapidly enter the cell cycle and secrete trophic factors that support the myogenic activity of muscle stem cells. Conversely, deregulation of FAP cell activity is associated with the accumulation of fibrofatty tissue in pathological conditions such as muscular dystrophies and ageing. Considering their central role in skeletal muscle pathophysiology, the regulatory mechanisms of FAPs and their cellular and molecular crosstalk with muscle stem cells are highly investigated in the field. In this review, we summarize the current knowledge on FAP cell characteristics, heterogeneity and the cellular crosstalk during skeletal muscle homeostasis and regeneration. We further describe their role in muscular disorders, as well as different therapeutic strategies targeting these cells to restore muscle regeneration.


Subject(s)
Gene Regulatory Networks , Mesenchymal Stem Cells/cytology , Muscle, Skeletal/physiology , Adipogenesis , Animals , Cell Differentiation , Homeostasis , Humans , Mesenchymal Stem Cells/physiology , Muscle, Skeletal/cytology , Regeneration , Sequence Analysis, RNA , Single-Cell Analysis
17.
Clin Sci (Lond) ; 135(22): 2589-2605, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34750633

ABSTRACT

Individuals born preterm show reduced exercise capacity and increased risk for pulmonary and cardiovascular diseases, but the impact of preterm birth on skeletal muscle, an inherently critical part of cardiorespiratory fitness, remains unknown. We evaluated the impacts of preterm birth-related conditions on the development, growth, and function of skeletal muscle using a recognized preclinical rodent model in which newborn rats are exposed to 80% oxygen from days 3 to 10 of life. We analyzed different hindlimb muscles of male and female rats at 10 days (neonatal), 4 weeks (juvenile), and 16 weeks (young adults). Neonatal high oxygen exposure increased the generation of reactive oxygen species (ROS) and the signs of inflammation in skeletal muscles, which was associated with muscle fiber atrophy, fiber type shifting (reduced proportion of type I slow fibers and increased proportion of type IIb fast-fatigable fibers), and impairment in muscle function. These effects were maintained until adulthood. Fast-twitch muscles were more vulnerable to the effects of hyperoxia than slow-twitch muscles. Male rats, which expressed lower antioxidant defenses, were more susceptible than females to oxygen-induced myopathy. Overall, preterm birth-related conditions have long-lasting effects on the composition, morphology, and function of skeletal muscles; and these effects are sex-specific. Oxygen-induced changes in skeletal muscles could contribute to the reduced exercise capacity and to increased risk of diseases of preterm born individuals.


Subject(s)
Disease Models, Animal , Muscle, Skeletal/metabolism , Premature Birth , Animals , Animals, Newborn , Female , Hyperoxia , Male , Muscle, Skeletal/pathology , Muscular Atrophy/etiology , Oxidative Stress , Rats, Sprague-Dawley
18.
Nat Commun ; 12(1): 6264, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34716330

ABSTRACT

Lack of dystrophin causes muscle degeneration, which is exacerbated by chronic inflammation and reduced regenerative capacity of muscle stem cells in Duchenne Muscular Dystrophy (DMD). To date, glucocorticoids remain the gold standard for the treatment of DMD. These drugs are able to slow down the progression of the disease and increase lifespan by dampening the chronic and excessive inflammatory process; however, they also have numerous harmful side effects that hamper their therapeutic potential. Here, we investigated Resolvin-D2 as a new therapeutic alternative having the potential to target multiple key features contributing to the disease progression. Our in vitro findings showed that Resolvin-D2 promotes the switch of macrophages toward their anti-inflammatory phenotype and increases their secretion of pro-myogenic factors. Moreover, Resolvin-D2 directly targets myogenic cells and promotes their differentiation and the expansion of the pool of myogenic progenitor cells leading to increased myogenesis. These effects are ablated when the receptor Gpr18 is knocked-out, knocked-down, or blocked by the pharmacological antagonist O-1918. Using different mouse models of DMD, we showed that Resolvin-D2 targets both inflammation and myogenesis leading to enhanced muscle function compared to glucocorticoids. Overall, this preclinical study has identified a new therapeutic approach that is more potent than the gold-standard treatment for DMD.


Subject(s)
Docosahexaenoic Acids/pharmacology , Muscle Development/drug effects , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/physiopathology , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Disease Models, Animal , Glucocorticoids/pharmacology , Macrophages/drug effects , Macrophages/pathology , Male , Mice, Inbred mdx , Mice, Knockout , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle Development/physiology , Myoblasts/drug effects , Utrophin/genetics
19.
Parasitol Int ; 76: 102063, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31978599

ABSTRACT

Pour-on eprinomectin was recently registered for lactating small ruminants. Given the high prevalence of benzimidazole resistance in gastrointestinal nematodes in dairy goats, many farmers use eprinomectin exclusively to treat their animals. On a French dairy goat farm, a veterinary practitioner noted a poor response to two types of eprinomectin treatment (pour-on application and injectable formulation). Therefore, we evaluated the efficacy of both formulations of eprinomectin, as well as moxidectin and fenbendazole, using the fecal egg count reduction test (FECRT) according to the World Association for the Advancement of Veterinary Parasitology (WAAVP) guidelines. Nematode species were identified at days 0 and post-treatment days 14 after bulk larval cultures, by morphology and real-time PCR. Plasma concentrations of eprinomectin were analyzed by high-performance liquid chromatography (HPLC) at post-treatment days 2 and 5 in the eprinomectin-treated groups. Egg count reductions were poor in animals treated with topical (-16.7%; 95% CI:[-237; 59]) or subcutaneous (21.5%; 95% CI:[-126; 73]) eprinomectin, and with fenbendazole (-5.8%; 95% CI:[-205; 63]). Haemonchus contortus was the main species identified by morphology and by real-time PCR before and after treatment. The plasma concentrations of eprinomectin were determined in all eprinomectin-treated animals and were above 2 ng/ml at post-treatment day 2, indicating that the lack of effect was not due to low exposure of the worms to the drug. Interestingly, moxidectin remained effective in all infected animals. This is the first report of multiple resistance to eprinomectin and benzimidazole in H. contortus on a French dairy goat farm with moxidectin as a relevant alternative.


Subject(s)
Anthelmintics/therapeutic use , Benzimidazoles/therapeutic use , Drug Resistance, Multiple , Goats/parasitology , Haemonchiasis/veterinary , Haemonchus/drug effects , Ivermectin/analogs & derivatives , Animals , Anthelmintics/blood , Benzimidazoles/blood , Farms , Female , France , Goat Diseases/drug therapy , Goat Diseases/parasitology , Haemonchiasis/drug therapy , Ivermectin/blood , Ivermectin/therapeutic use , Parasite Egg Count
20.
Stem Cells Int ; 2019: 4761427, 2019.
Article in English | MEDLINE | ID: mdl-31396285

ABSTRACT

Muscle regeneration is a closely regulated process that involves a variety of cell types such as satellite cells, myofibers, fibroadipogenic progenitors, endothelial cells, and inflammatory cells. Among these different cell types, macrophages emerged as a central actor coordinating the different cellular interactions and biological processes. Particularly, the transition of macrophages from their proinflammatory to their anti-inflammatory phenotype was shown to regulate inflammation, myogenesis, fibrosis, vascularization, and return to homeostasis. On the other hand, deregulation of macrophage accumulation or polarization in chronic degenerative muscle disorders was shown to impair muscle regeneration. Considering the key roles of macrophages in skeletal muscle, they represent an attractive target for new therapeutic approaches aiming at mitigating various muscle disorders. This review aims at summarizing the novel insights into macrophage heterogeneity, plasticity, and functions in skeletal muscle homeostasis, regeneration, and disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...