Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Exp Dermatol ; 32(5): 660-670, 2023 05.
Article in English | MEDLINE | ID: mdl-36645024

ABSTRACT

Atopic dermatitis (AD) is a Th2-type inflammatory disease characterized by an alteration of epidermal barrier following the release of IL-4 and IL-13. These cytokines activate type II IL-4Rα/IL-13Rα1 receptors in the keratinocyte. Whilst IL-2Rγ, that forms type I receptor for IL-4, is only expressed in haematopoietic cells, recent studies suggest its induction in keratinocytes, which questions about its role. We studied expression of IL-2Rγ in keratinocytes and its role in alteration of keratinocyte function and epidermal barrier. IL-2Rγ expression in keratinocytes was studied using both reconstructed human epidermis (RHE) exposed to IL-4/IL-13 and AD skin. IL-2Rγ induction by type II receptor has been analyzed using JAK inhibitors and RHE knockout (KO) for IL13RA1. IL-2Rγ function was investigated in RHE KO for IL2RG. In RHE, IL-4/IL-13 induce expression of IL-2Rγ at the mRNA and protein levels. Its mRNA expression is also visualized in keratinocytes of lesional AD skin. IL-2Rγ expression is low in RHE treated with JAK inhibitors and absent in RHE KO for IL13RA1. Exposure to IL-4/IL-13 alters epidermal barrier, but this alteration is absent in RHE KO for IL2RG. A more important induction of IL-13Rα2 is reported in RHE KO for IL2RG than in not edited RHE. These results demonstrate IL-2Rγ induction in keratinocytes through activation of type II receptor. IL-2Rγ is involved in the alteration of the epidermal barrier and in the regulation of IL-13Rα2 expression. Observation of IL-2Rγ expression by keratinocytes inside AD lesional skin suggests a role for this receptor subunit in the disease.


Subject(s)
Dermatitis, Atopic , Interleukin Receptor Common gamma Subunit , Humans , Cells, Cultured , Dermatitis, Atopic/metabolism , Epidermis/metabolism , Interleukin-13/metabolism , Interleukin-4/metabolism , Janus Kinase Inhibitors , Keratinocytes/metabolism , RNA, Messenger/metabolism , Interleukin Receptor Common gamma Subunit/metabolism
2.
Front Immunol ; 13: 984016, 2022.
Article in English | MEDLINE | ID: mdl-36275755

ABSTRACT

Introduction: Although the presence of pathogens in skin wounds is known to delay the wound healing process, the mechanisms underlying this delay remain poorly understood. In the present study, we have investigated the regulatory role of proinflammatory cytokines on the healing kinetics of infected wounds. Methods: We have developed a mouse model of cutaneous wound healing, with or without wound inoculation with Staphylococcus aureus and Pseudomonas aeruginosa, two major pathogens involved in cutaneous wound bacterial infections. Results: Aseptic excision in C57BL/6 mouse skin induced early expression of IL-1ß, TNFα and Oncostatin M (OSM), without detectable expression of IL-22 and IL-17A/F. S. aureus and P. aeruginosa wound inoculation not only increased the expression of IL-1ß and OSM, but also induced a strong cutaneous expression of IL-22, IL-17A and IL-17F, along with an increased number of infiltrating IL-17A and/or IL-22-producing γδ T cells. The same cytokine expression pattern was observed in infected human skin wounds. When compared to uninfected wounds, mouse skin infection delayed the wound healing process. Injection of IL-1α, TNFα, OSM, IL-22 and IL-17 together in the wound edges induced delayed wound healing similar to that induced by the bacterial infection. Wound healing experiments in infected Rag2KO mice (deficient in lymphocytes) showed a wound healing kinetic similar to uninfected Rag2KO mice or WT mice. Rag2KO infected-skin lesions expressed lower levels of IL-17 and IL-22 than WT, suggesting that the expression of these cytokines is mainly dependent on γδ T cells in this model. Wound healing was not delayed in infected IL-17R/IL-22KO, comparable to uninfected control mice. Injection of recombinant IL-22 and IL-17 in infected wound edges of Rag2KO mice re-establish the delayed kinetic of wound healing, as in infected WT mice. Conclusion: These results demonstrate the synergistic and specific effects of IL-22 and IL-17 induced by bacterial infection delay the wound healing process, regardless of the presence of bacteria per se. Therefore, these cytokines play an unexpected role in delayed skin wound healing.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Pseudomonas aeruginosa , Mice , Humans , Animals , Pseudomonas aeruginosa/metabolism , Interleukin-17/metabolism , Staphylococcus aureus/metabolism , Tumor Necrosis Factor-alpha , Oncostatin M , Methicillin-Resistant Staphylococcus aureus/metabolism , Mice, Inbred C57BL , Interleukin-22
3.
Eur J Dermatol ; 32(3): 377-383, 2022 05 01.
Article in English | MEDLINE | ID: mdl-36065533

ABSTRACT

Background: Type 1 interferon (IFN-I) response induced by SARS-CoV-2 has been hypothesized to explain the association between chilblain lesions (CL) and SARS-CoV-2 infection. Objective: To explore direct cytopathogenicity of SARS-CoV-2 in CL and to focus on IFN-I expression in patients with chilblains. Materials & Methods: A monocentric cohort of 43 patients presenting with CL from April 2020 to May 2021 were included. During this period, all CL were, a priori, considered to be SARS-CoV-2-related. RT-qPCR on nasopharyngeal swabs and measurements of anti-SARS-CoV-2 antibodies were performed. Anti-SARS-CoV-2 immunostainings as well as SARS-CoV-2 RT-qPCR were performed on biopsy specimens of CL and controls. Expression of MX1 and IRF7 was analysed on patients' biopsy specimens and/or PBMC and compared with controls and/or chilblains observed before the pandemic. Serum IFN-α was also measured. Results: RT-qPCR was negative in all patients and serological tests were positive in 11 patients. Immunostaining targeting viral proteins confirmed the lack of specificity. SARS-CoV-2 RNA remained undetected in all CL specimens. MX1 immunostaining was positive in CL and in pre-pandemic chilblains compared to controls. MX1 and IRF7 expression was significantly increased in CL specimens but not in PBMC. Serum IFN-α was undetected in CL patients. Conclusion: CL observed during the pandemic do not appear to be directly related to SARS-CoV-2 infection, either based on viral cytopathogenicity or high IFN-I response induced by the virus.


Subject(s)
COVID-19 , Chilblains , COVID-19/complications , Chilblains/diagnosis , Humans , Interferon Regulatory Factor-7 , Interferon-alpha , Leukocytes, Mononuclear/immunology , Myxovirus Resistance Proteins , Pandemics , RNA, Viral , SARS-CoV-2
4.
J Cell Mol Med ; 26(7): 1865-1875, 2022 04.
Article in English | MEDLINE | ID: mdl-35238133

ABSTRACT

A subset of cytokines triggers the JAK-STAT pathway to exert various functions such as the induction of inflammation and immune responses. The receptors for these cytokines are dimers/trimers of transmembrane proteins devoid of intracellular kinase activity. Instead, they rely on Janus kinases (JAKs) for signal transduction. Classical JAK-STAT signalling involves phosphorylation of cytokine receptors' intracellular tyrosines, which subsequently serve as docking sites for the recruitment and activation of STATs. However, there is evidence to show that several cytokine receptors also use a noncanonical, receptor tyrosine-independent path to induce activation of STAT proteins. We identified two main alternative modes of STAT activation. The first involves an association between a tyrosine-free region of the cytokine receptor and STATs, while the second seems to depend on a direct interaction between JAK and STAT proteins. We were able to identify the use of noncanonical mechanisms by almost a dozen cytokine receptors, suggesting they have some importance. These alternative pathways and the receptors that employ them are discussed in this review.


Subject(s)
Janus Kinases , STAT Transcription Factors , Janus Kinases/genetics , Janus Kinases/metabolism , Phosphorylation , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction/physiology
5.
Sci Rep ; 12(1): 2077, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136139

ABSTRACT

More than a year after the start of the pandemic, COVID-19 remains a global health emergency. Although the immune response against SARS-CoV-2 has been extensively studied, some points remain controversial. One is the role of antibodies in viral clearance and modulation of disease severity. While passive transfer of neutralizing antibodies protects against SARS-CoV-2 infection in animal models, titers of anti-SARS-CoV-2 antibodies have been reported to be higher in patients suffering from more severe forms of the disease. A second key question for pandemic management and vaccine design is the persistence of the humoral response. Here, we characterized the antibody response in 187 COVID-19 patients, ranging from asymptomatic individuals to patients who died from COVID-19, and including patients who recovered. We developed in-house ELISAs to measure titers of IgG, IgM and IgA directed against the RBD or N regions in patient serum or plasma, and a spike-pseudotyped neutralization assay to analyse seroneutralization. Higher titers of virus-specific antibodies were detected in patients with severe COVID-19, including deceased patients, compared to asymptomatic patients. This demonstrates that fatal infection is not associated with defective humoral response. Finally, most of recovered patients still had anti-SARS-CoV-2 IgG more than 3 months after infection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunity, Humoral , SARS-CoV-2/immunology , Adult , Aged , COVID-19/mortality , Female , Humans , Male , Middle Aged
6.
Cancer Immunol Immunother ; 71(8): 1851-1862, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34973084

ABSTRACT

Transmembrane protein GARP binds latent TGF-ß1 to form GARP:(latent)TGF-ß1 complexes on the surface of several cell types including Tregs, B-cells, and platelets. Upon stimulation, these cells release active TGF-ß1. Blocking TGF-ß1 activation by Tregs with anti-GARP:TGF-ß1 mAbs overcomes resistance to PD1/PD-L1 blockade and induces immune-mediated regressions of murine tumors, indicating that Treg-derived TGF-ß1 inhibits anti-tumor immunity. TGF-ß1 exerts a vast array of effects on immune responses. For example, it favors differentiation of TH17 cells and B-cell switch to IgA production, two important processes for mucosal immunity. Here, we sought to determine whether treatment with anti-GARP:TGF-ß1 mAbs would perturb immune responses to intestinal bacterial infection. We observed no aggravation of intestinal disease, no systemic dissemination, and no alteration of innate or adaptative immune responses upon oral gavage of C. rodentium in highly susceptible Il22r-/- mice treated with anti-GARP:TGF-ß1 mAbs. To examine the effects of GARP:TGF-ß1 blockade on Ig production, we compared B cell- and TH cell- responses to OVA or CTB protein immunization in mice carrying deletions of Garp in Tregs, B cells, or platelets. No alteration of adaptive immune responses to protein immunization was observed in the absence of GARP on any of these cells. Altogether, we show that antibody-mediated blockade of GARP:TGF-ß1 or genetic deletion of Garp in Tregs, B cells or platelets, do not alter innate or adaptive immune responses to intestinal bacterial infection or protein immunization in mice. Anti-GARP:TGF-ß1 mAbs, currently tested for cancer immunotherapy, may thus restore anti-tumor immunity without severely impairing other immune defenses. PRéCIS: Immunotherapy with GARP:TGF-ß1 mAbs may restore anti-tumor immunity without impairing immune or inflammatory responses required to maintain homeostasis or host defense against infection, notably at mucosal barriers.


Subject(s)
Adaptive Immunity , Bacterial Infections , Membrane Proteins , Transforming Growth Factor beta1 , Animals , Antibodies, Monoclonal/metabolism , Bacterial Infections/immunology , Bacterial Infections/metabolism , Immunity , Immunization , Membrane Proteins/metabolism , Mice , T-Lymphocytes, Regulatory , Transforming Growth Factor beta1/metabolism
7.
PLoS One ; 16(8): e0247738, 2021.
Article in English | MEDLINE | ID: mdl-34383769

ABSTRACT

The commensal microbiota regulates susceptibility to enteric pathogens by fine-tuning mucosal innate immune responses, but how susceptibility to enteric viruses is shaped by the microbiota remains incompletely understood. Past reports have indicated that commensal bacteria may either promote or repress rotavirus replication in the small intestine of mice. We now report that rotavirus replicated more efficiently in the intestines of germ-free and antibiotic-treated mice compared to animals with an unmodified microbiota. Antibiotic treatment also facilitated rotavirus replication in type I and type III interferon (IFN) receptor-deficient mice, revealing IFN-independent proviral effects. Expression of interleukin-22 (IL-22) was strongly diminished in the intestine of antibiotic-treated mice. Treatment with exogenous IL-22 blocked rotavirus replication in microbiota-depleted wild-type and Stat1-/- mice, demonstrating that the antiviral effect of IL-22 in animals with altered microbiome is not dependent on IFN signaling. In antibiotic-treated animals, IL-22-induced a specific set of genes including Fut2, encoding fucosyl-transferase 2 that participates in the biosynthesis of fucosylated glycans which can mediate rotavirus binding. Interestingly, IL-22 also blocked rotavirus replication in antibiotic-treated Fut2-/- mice. Furthermore, IL-22 inhibited rotavirus replication in antibiotic-treated mice lacking key molecules of the necroptosis or pyroptosis pathways of programmed cell death. Taken together, our results demonstrate that IL-22 determines rotavirus susceptibility of antibiotic-treated mice, yet the IL-22-induced effector molecules conferring rotavirus resistance remain elusive.


Subject(s)
Anti-Bacterial Agents/adverse effects , Interleukins/metabolism , Rotavirus Infections/etiology , Animals , Anti-Bacterial Agents/pharmacology , Disease Susceptibility , Female , Gastrointestinal Microbiome/drug effects , Gene Expression Profiling , Interleukins/physiology , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction , Rotavirus/physiology , Interleukin-22
8.
J Invest Dermatol ; 141(11): 2668-2678.e6, 2021 11.
Article in English | MEDLINE | ID: mdl-33992648

ABSTRACT

Exacerbated IL-22 activity induces tissue inflammation and immune disorders such as psoriasis. However, because IL-22 is also essential for tissue repair and defense at barrier interfaces, targeting IL-22 activity to treat psoriasis bears the risk of deleterious effects at mucosal sites such as the gut. We previously showed in vitro that IL-22 signaling relies on IL-22 receptor alpha (IL-22Rα) Y-dependent and -independent pathways. The second depends on the C-terminal Y-less region of IL-22Rα and leads to a massive signal transducer and activator of transcription 3 (STAT3) activation. Because STAT3 activation is associated with the development of psoriasis, we hypothesized that the specific inhibition of the noncanonical STAT3 activation by the Y-less region of IL-22Rα could reduce psoriasis-like disease while leaving intact its tissue defense functions in the gut. We show that mice expressing a C-terminally truncated version of IL-22Rα (ΔCtermut/mut mice) are protected from the development of psoriasis-like dermatitis lesions induced by imiquimod to a lesser extent than Il22ra-/- mice. In contrast, only Il22ra-/- mice lose weight after Citrobacter rodentium infection. Altogether, our data suggest that specific targeting of the noncanonical STAT3 activation by IL-22 could serve to treat psoriasis-like skin inflammation without affecting IL-22‒dependent tissue repair or barrier defense at other sites.


Subject(s)
Imiquimod/toxicity , Psoriasis/chemically induced , Receptors, Interleukin/physiology , STAT3 Transcription Factor/physiology , Animals , Citrobacter rodentium , Enterobacteriaceae Infections/immunology , Interleukins/pharmacology , Mice , Mice, Inbred C57BL , Interleukin-22
9.
Am J Physiol Heart Circ Physiol ; 320(2): H838-H853, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33416451

ABSTRACT

Although sodium glucose cotransporter 1 (SGLT1) has been identified as one of the major SGLT isoforms expressed in the heart, its exact role remains elusive. Evidence using phlorizin, the most common inhibitor of SGLTs, has suggested its role in glucose transport. However, phlorizin could also affect classical facilitated diffusion via glucose transporters (GLUTs), bringing into question the relevance of SGLT1 in overall cardiac glucose uptake. Accordingly, we assessed the contribution of SGLT1 in cardiac glucose uptake using the SGLT1 knockout mouse model, which lacks exon 1. Glucose uptake was similar in cardiomyocytes isolated from SGLT1-knockout (Δex1KO) and control littermate (WT) mice either under basal state, insulin, or hyperglycemia. Similarly, in vivo basal and insulin-stimulated cardiac glucose transport measured by micro-PET scan technology did not differ between WT and Δex1KO mice. Micromolar concentrations of phlorizin had no impact on glucose uptake in either isolated WT or Δex1KO-derived cardiomyocytes. However, higher concentrations (1 mM) completely inhibited insulin-stimulated glucose transport without affecting insulin signaling nor GLUT4 translocation independently from cardiomyocyte genotype. Interestingly, we discovered that mouse and human hearts expressed a shorter slc5a1 transcript, leading to SGLT1 protein lacking transmembrane domains and residues involved in glucose and sodium bindings. In conclusion, cardiac SGLT1 does not contribute to overall glucose uptake, probably due to the expression of slc5a1 transcript variant. The inhibitory effect of phlorizin on cardiac glucose uptake is SGLT1-independent and can be explained by GLUT transporter inhibition. These data open new perspectives in understanding the role of SGLT1 in the heart.NEW & NOTEWORTHY Ever since the discovery of its expression in the heart, SGLT1 has been considered as similar as the intestine and a potential contributor to cardiac glucose transport. For the first time, we have demonstrated that a slc5a1 transcript variant is present in the heart that has no significant impact on cardiac glucose handling.


Subject(s)
Glucose/metabolism , Myocytes, Cardiac/metabolism , Sodium-Glucose Transporter 1/metabolism , Animals , Biological Transport , Cells, Cultured , Glucose Transporter Type 4/antagonists & inhibitors , Glucose Transporter Type 4/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Male , Mice, Inbred C57BL , Mice, Knockout , Phlorhizin/pharmacology , Protein Isoforms , Rats, Wistar , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 1/genetics
10.
Front Med (Lausanne) ; 8: 780750, 2021.
Article in English | MEDLINE | ID: mdl-35111777

ABSTRACT

Critical COVID-19, like septic shock, is related to a dysregulated systemic inflammatory reaction and is associated with a high incidence of thrombosis and microthrombosis. Improving the understanding of the underlying pathophysiology of critical COVID-19 could help in finding new therapeutic targets already explored in the treatment of septic shock. The current study prospectively compared 48 patients with septic shock and 22 patients with critical COVID-19 regarding their clinical characteristics and outcomes, as well as key plasmatic soluble biomarkers of inflammation, coagulation, endothelial activation, platelet activation, and NETosis. Forty-eight patients with matched age, gender, and co-morbidities were used as controls. Critical COVID-19 patients exhibited less organ failure but a prolonged ICU length-of-stay due to a prolonged respiratory failure. Inflammatory reaction of critical COVID-19 was distinguished by very high levels of interleukin (IL)-1ß and T lymphocyte activation (including IL-7 and CD40L), whereas septic shock displays higher levels of IL-6, IL-8, and a more significant elevation of myeloid response biomarkers, including Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) and IL-1ra. Subsequent inflammation-induced coagulopathy of COVID-19 also differed from sepsis-induced coagulopathy (SIC) and was characterized by a marked increase in soluble tissue factor (TF) but less platelets, antithrombin, and fibrinogen consumption, and less fibrinolysis alteration. In conclusion, COVID-19 inflammation-induced coagulopathy substantially differs from SIC. Modulating TF release and activity should be evaluated in critical COVID-19 patients.

11.
Nat Commun ; 11(1): 4115, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32807795

ABSTRACT

The transcription factor STAT3 is frequently activated in human solid and hematological malignancies and remains a challenging therapeutic target with no approved drugs to date. Here, we develop synthetic antibody mimetics, termed monobodies, to interfere with STAT3 signaling. These monobodies are highly selective for STAT3 and bind with nanomolar affinity to the N-terminal and coiled-coil domains. Interactome analysis detects no significant binding to other STATs or additional off-target proteins, confirming their exquisite specificity. Intracellular expression of monobodies fused to VHL, an E3 ubiquitin ligase substrate receptor, results in degradation of endogenous STAT3. The crystal structure of STAT3 in complex with monobody MS3-6 reveals bending of the coiled-coil domain, resulting in diminished DNA binding and nuclear translocation. MS3-6 expression strongly inhibits STAT3-dependent transcriptional activation and disrupts STAT3 interaction with the IL-22 receptor. Therefore, our study establishes innovative tools to interfere with STAT3 signaling by different molecular mechanisms.


Subject(s)
Antibodies/metabolism , STAT3 Transcription Factor/metabolism , A549 Cells , Antibodies/genetics , Blotting, Western , Calorimetry , Crystallography, X-Ray , Flow Cytometry , Fluorescence Polarization , Fluorescent Antibody Technique , Humans , Mass Spectrometry , Protein Binding , Protein Domains/immunology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , Signal Transduction/genetics , Signal Transduction/physiology , Synthetic Biology
12.
Gastroenterology ; 159(4): 1444-1458.e15, 2020 10.
Article in English | MEDLINE | ID: mdl-32569771

ABSTRACT

BACKGROUND & AIMS: Activity of nuclear factor κB transcription factors and signaling via signal transducer and activator of transcription (STAT) are frequently altered in gastric cancer cells. Mice lacking NFKB1 (Nfkb1-/- mice) develop invasive gastric cancer, and their gastric tissues have increased levels of cytokines, such as interleukin (IL) 6, IL22, IL11, and tumor necrosis factor (TNF), as well as increased activation of STAT1. We investigated whether these cytokines were required for STAT1 activation in gastric tissues of mice and critical for gastric tumorigenesis. METHODS: We crossed Nfkb1-/- mice with Il6-/-, Il22-/-, Il11Rα-/-, and Tnf-/- mice. Stomach tissues from compound mutant mice were analyzed by histology, immunoblotting, and RNA sequencing. Lymphoid, myeloid, and epithelial cells were isolated from stomachs, and the levels of cytokines were determined by flow cytometric analysis. RESULTS: Nfkb1-/- mice developed gastritis, oxyntic atrophy, gastric dysplasia, and invasive tumors, whereas Nfkb1-/-Stat1-/- mice did not, even when followed for as long as 2 years. The levels of Il6, Il11, Il22, and Tnf messenger RNA were increased in the body and antrum of the stomachs from Nfkb1-/- mice, from 3-6 months of age. However, Nfkb1-/-Il6-/-, Nfkb1-/-Il22-/-, and Nfkb1-/-Il11Rα-/- mice still developed gastric tumors, although the absence of IL11 receptor (IL11R) significantly reduced development of invasive gastric tumors. Stomachs from Nfkb1-/-Tnf-/- mice exhibited significantly less gastritis and oxyntic atrophy and fewer tumors than Nfkb1-/- mice. This correlated with reduced activation of STAT1 and STAT3 and fewer numbers of T cells and B cells infiltrating the gastric body. Loss of STAT1 or TNF significantly reduced expression of PD-L1 on epithelial and myeloid (CD11b+) cells in the gastric mucosa of Nfkb1-/- mice-indeed, to the levels observed on the corresponding cells from wild-type mice. CONCLUSIONS: In studies of gastric tumor development in knockout mice, we found that loss of NFKB1 causes increased expression of TNF in the stomach and thereby drives activation of STAT1, resulting in an inflammatory immune response and the development of gastric cancer. IL11R appears to be required for the progression of gastric tumors to the invasive stage. These findings suggest that inhibitors of TNF, and possibly also inhibitors of IL11/IL11Rα, might be useful in the treatment of gastric cancer.


Subject(s)
Gastritis/pathology , NF-kappa B p50 Subunit/metabolism , STAT1 Transcription Factor/metabolism , Stomach Neoplasms/etiology , Stomach Neoplasms/pathology , Tumor Necrosis Factor-alpha/metabolism , Animals , Carcinogenesis , Gastritis/etiology , Gastritis/metabolism , Interleukin-11/metabolism , Interleukin-6/metabolism , Mice , Signal Transduction , Stomach Neoplasms/metabolism
13.
J Clin Invest ; 130(7): 3560-3575, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32229721

ABSTRACT

Immune microenvironment plays a critical role in lung cancer control versus progression and metastasis. In this investigation, we explored the effect of tumor-infiltrating lymphocyte subpopulations on lung cancer biology by studying in vitro cocultures, in vivo mouse models, and human lung cancer tissue. Lymphocyte conditioned media (CM) induced epithelial-mesenchymal transition (EMT) and migration in both primary human lung cancer cells and cell lines. Correspondingly, major accumulation of Th9 and Th17 cells was detected in human lung cancer tissue and correlated with poor survival. Coculturing lung cancer cells with Th9/Th17 cells or exposing them to the respective CM induced EMT in cancer cells and modulated the expression profile of genes implicated in EMT and metastasis. These features were reproduced by the signatory cytokines IL-9 and IL-17, with gene regulatory profiles evoked by these cytokines partly overlapping and partly complementary. Coinjection of Th9/Th17 cells with tumor cells in WT, Rag1-/-, Il9r-/-, and Il17ra-/- mice altered tumor growth and metastasis. Accordingly, inhibition of IL-9 or IL-17 cytokines by neutralizing antibodies decreased EMT and slowed lung cancer progression and metastasis. In conclusion, Th9 and Th17 lymphocytes induce lung cancer cell EMT, thereby promoting migration and metastatic spreading and offering potentially novel therapeutic strategies.


Subject(s)
Cell Movement/immunology , Epithelial-Mesenchymal Transition/immunology , Lung Neoplasms/immunology , Th17 Cells/immunology , Tumor Microenvironment/immunology , A549 Cells , Animals , Humans , Interleukin-17/immunology , Interleukin-9/immunology , Lung Neoplasms/pathology , Mice , Neoplasm Metastasis , Th17 Cells/pathology
14.
Front Immunol ; 11: 144, 2020.
Article in English | MEDLINE | ID: mdl-32161582

ABSTRACT

Airborne ozone exposure causes severe lung injury and inflammation. The aryl hydrocarbon Receptor (AhR) (1), activated in pollutant-induced inflammation, is critical for cytokine production, especially IL-22 and IL-17A. The role of AhR in ozone-induced lung inflammation is unknown. We report here that chronic ozone exposure activates AhR with increased tryptophan and lipoxin A4 production in mice. AhR-/- mice show increased lung inflammation, airway hyperresponsiveness, and tissue remodeling with an increased recruitment of IL-17A and IL-22-expressing cells in comparison to control mice. IL-17A- and IL-22-neutralizing antibodies attenuate lung inflammation in AhR-/- and control mice. Enhanced lung inflammation and recruitment of ILC3, ILC2, and T cells were observed after T cell-specific AhR depletion using the AhRCD4cre-deficient mice. Together, the data demonstrate that ozone exposure activates AhR, which controls lung inflammation, airway hyperresponsiveness, and tissue remodeling via the reduction of IL-22 expression.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Interleukins/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , Ozone/adverse effects , Pneumonia/chemically induced , Pneumonia/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Basic Helix-Loop-Helix Transcription Factors/genetics , CD4-Positive T-Lymphocytes/immunology , Interleukin-17/immunology , Interleukin-17/metabolism , Interleukins/genetics , Interleukins/immunology , Lipoxins/metabolism , Lung Injury/drug therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Pneumonia/drug therapy , Receptors, Aryl Hydrocarbon/genetics , Receptors, Interleukin-17/genetics , Respiratory Hypersensitivity/drug therapy , Tryptophan/metabolism , Interleukin-22
15.
Eur J Immunol ; 50(7): 1034-1043, 2020 07.
Article in English | MEDLINE | ID: mdl-32130733

ABSTRACT

IL-9 is involved in various T cell-dependent inflammatory models including colitis, encepahlitis, and asthma. However, the regulation and specificity of IL-9 responsiveness by T cells during immune responses remains poorly understood. Here, we addressed this question using two different models: experimental colitis induced by transfer of naive CD4+ CD45RBhigh T cells into immunodeficient mice, and OVA-specific T cell activation. In the colitis model, constitutive IL-9 expression exacerbated inflammation upon transfer of CD4+ CD45RBhigh T cells from WT but not from Il9r-/- mice, indicating that IL-9 acts directly on T cells. Suprisingly, such naïve CD4+ CD45RBhigh T cells failed to express the Il9r or respond to IL-9 in vitro, in contrast with CD4+ CD45RBlow T cells. By using OVA-specific T cells, we observed that T cells acquired the capacity to respond to IL-9 along with CD44 upregulation, after long-lasting (5 to 12 days) in vivo antigenic stimulation. Il9r expression was associated with Th2 and Th17 phenotypes. Interestingly, in contrast to the IL-2 response, antigen restimulation downregulated IL-9 responsiveness. Taken together, our results demonstrate that IL-9 does not act on naïve T cells but that IL-9 responsiveness is acquired by CD4+ T cells after in vivo activation and acquisition of memory markers such as CD44.


Subject(s)
Adoptive Transfer/adverse effects , Colitis/immunology , Interleukin-9/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Animals , Colitis/etiology , Colitis/genetics , Colitis/pathology , Disease Models, Animal , Hyaluronan Receptors/genetics , Hyaluronan Receptors/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Interleukin-9/genetics , Mice , Mice, Knockout , Mice, SCID , Receptors, Interleukin-9/genetics , Receptors, Interleukin-9/immunology , Th17 Cells/pathology , Th17 Cells/transplantation , Th2 Cells/pathology , Th2 Cells/transplantation
18.
Am J Physiol Renal Physiol ; 316(4): F712-F722, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30724106

ABSTRACT

In recent years, the cytokine interleukin (IL)-22 attracted considerable attention due to its important immunoregulatory function in barrier tissues, such as the gut, lung, and skin. Although a regenerative role of IL-22 in renal tubular damage has been demonstrated, the role of IL-22 in the immunopathogenesis of glomerular injury is still unknown. Here, we demonstrate that the IL-22 receptor is expressed in the glomerular compartment of the kidney and that IL-22 expression increases in the renal cortex after induction of glomerular injury in a mouse model for crescentic glomerulonephritis (cGN, nephrotoxic nephritis). We identified γδ T cells and TH17 cells as major sources for IL-22 in the nephritic kidney. However, neither genetic or antibody-mediated deletion of IL-22 nor genetic deficiency in its endogenous inhibitor IL-22Rα2 (IL-22 binding protein) resulted in substantial phenotypic differences in mice with cGN with respect to crescent formation, tubulointerstitial damage, and kidney function impairment. Similarly, we did not observe significant differences between wild-type or IL-22-deficient mice in a mouse model of secondary focal and segmental glomerulosclerosis (adriamycin-induced nephropathy). As shown previously, we detected concomitant upregulation of IL-17A and IFN-γ production by T cells during the course of cGN, providing alternative cytokine pathways that mediate glomerular injury in this model. In conclusion, we show here that endogenous IL-22 expression is redundant in different forms of glomerular injury, indicating that the IL-22-directed therapies that are being tested in various human diseases might not affect the kidney in patients with glomerular disease.


Subject(s)
Glomerulonephritis/metabolism , Interleukins/metabolism , Animals , Female , Glomerulonephritis/immunology , Glomerulonephritis/pathology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Interferon-gamma/biosynthesis , Interleukins/genetics , Kidney/pathology , Kidney Cortex/metabolism , Kidney Glomerulus/metabolism , Kidney Tubules/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin/metabolism , T-Lymphocytes/metabolism , Interleukin-22
19.
Sci Rep ; 9(1): 1852, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30755657

ABSTRACT

Para-Phenylenediamine (PPD) is an aromatic amine used in hair dyes and in temporary black henna tattoos, which is a frequent cause of allergic contact dermatitis (ACD). ACD is a skin inflammatory reaction characterized by modifications such as spongiosis, exocytosis and acanthosis. The aim of this study is to characterize the expression and the role of IL-20-related cytokines, including IL-19, IL-20, IL-22 and IL-24, in ACD. The expression of IL19, IL20, IL22 and IL24 is increased in affected skin from PPD allergic patients compared with uninvolved skin. In addition, the expression of these cytokines positively correlates with clinical symptoms. To assess their role in ACD, we set up a mouse model of PPD-induced allergic contact dermatitis and we showed that, in contrast to Il22-deficient mice, Il22ra1-, Il20rb- and Il24-deficient mice are partially protected against development of PPD-induced contact hypersensitivity. These mice have decreased ear thickening and less acanthosis compared with WT mice after PPD treatment. In addition, the absence of IL-22R, IL-20R2 or IL-24 affects the recruitment of neutrophils into the skin but not the total IgE production. Taken together, these results demonstrate the implication of IL-24 via the IL-20R type II receptor in the inflammatory process of ACD.


Subject(s)
Cytokines/metabolism , Dermatitis, Allergic Contact/metabolism , Inflammation/chemically induced , Interleukins/metabolism , Skin/drug effects , Adult , Aged , Animals , Biopsy , Coloring Agents , Disease Models, Animal , Humans , Immunoglobulin E/metabolism , Inflammation/metabolism , Leukocyte Common Antigens/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Middle Aged , Phenylenediamines , Receptors, Interleukin/metabolism , Skin/metabolism , Interleukin-22
20.
Haematologica ; 104(2): 392-402, 2019 02.
Article in English | MEDLINE | ID: mdl-30213828

ABSTRACT

In spite of considerable therapeutic progress, acute graft-versus-host disease still limits allogeneic hematopoietic cell transplantation. We recently reported that mouse infection with nidovirus lactate dehydrogenase elevating virus impairs disease in non-conditioned B6D2F1 recipients of parental B6 spleen cells. As this virus activates TLR7, we tested a pharmacological TLR7 ligand, R848, in this model and observed complete survival if donor and recipients were treated before transplantation. Mixed lymphocyte culture performed 48 h after R848-treatment of normal mice demonstrated that both T-cell allo-responsiveness and antigen presentation by CD11b+ and CD8α+ dendritic cells were inhibited. These inhibitions were dependent on IFNAR-1 signaling. In the B6 to B6D2F1 transplantation model, R848 decelerated, but did not abrogate, donor T-cell implantation and activation. However, it decreased interferon-gamma, tumor necrosis factor-alpha and interleukin-27 while upregulating active transforming growth factor-beta 1 plasma levels. In addition, donor and recipient Foxp3+ regulatory T-cell numbers were increased in recipient mice and their elimination compromised disease prevention. R848 also strongly improved survival of lethally irradiated BALB/c recipients of B6 hematopoietic cells and this also correlated with an upregulation of CD4 and CD8 Foxp3+ regulatory T cells that could be further increased by inhibition of interleukin-27. The combination of anti-interleukin-27p28 mono -clonal antibody and R848 showed strong synergy in preventing disease in the B6 to B6D2F1 transplantation model when recipients were sublethally irradiated and this also correlated with upregulation of regulatory T cells. We conclude that R848 modulates multiple aspects of graft-versus-host disease and offers potential for safe allogeneic bone marrow transplantation that can be further optimized by inhibition of interleukin-27.


Subject(s)
Antibodies, Monoclonal/pharmacology , Graft vs Host Disease/prevention & control , Imidazoles/pharmacology , Interleukin-27/antagonists & inhibitors , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Toll-Like Receptor 7/metabolism , Animals , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Graft vs Host Disease/etiology , Graft vs Host Disease/mortality , Immunomodulation/drug effects , Ligands , Melanoma, Experimental , Mice , Neoplasm Transplantation , T-Lymphocytes, Regulatory/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...