Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Stroke Cerebrovasc Dis ; : 107628, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38342273

ABSTRACT

OBJECTIVES: Ischemic stroke (IS) is a leading cause of morbidity and mortality globally. This study aimed to investigate the role of exosomes (Exo) derived from bone marrow mesenchymal stem cells (BMSCs) treated with Musk Ketone (Mus treated-Exo) in the development of IS injury. METHODS: BMSCs were pretreated with 10 µM Mus for 36 hours, and Exo derived from these Mus-treated BMSCs (Mus-treated Exo) were extracted. Rats with middle cerebral artery occlusion (MCAO) were administered either 2 mg/kg of control Exo (Ctrl-Exo), 2 mg/kg of Mus treated-Exo, or 10 µM Mus. Neurological deficit and cerebral infarction in the MCAO rats were assessed utilizing neurological scores and TTC staining. Neuronal apoptosis, activation of microglia/macrophages, and inflammation were evaluated through TUNEL staining, immunofluorescence staining, and western blot analysis, respectively. RESULTS: Our findings revealed that Mus-treated Exo possessed a more pronounced neuroprotective effect on MCAO rats when compared to Ctrl-Exo and Mus treatment alone. Specifically, Mus treated-Exo effectively ameliorated neurological function, reduced the volume of cerebral infarction, and diminished hemispheric swelling in MCAO rats. Moreover, it inhibited neuronal apoptosis and activation of microglia/macrophages, promoted the expression of the anti-apoptotic protein Bcl-2 while decreasing the expression of pro-apoptotic protein Bax, Cleaved-caspase 3, and pro-inflammatory factors IL-6 and COX-2. CONCLUSIONS: The findings imply that Mus treated-Exo could confer neuroprotection in rats affected by IS, potentially by attenuating apoptosis and neuroinflammation. The underlying mechanisms, however, warrant further investigation. Mus treated-Exo shows potential as a new therapeutic strategy for IS.

2.
Brain Res ; 1805: 148247, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36669713

ABSTRACT

Traditional Chinese medicine has emerged as promising targets for ischemic stroke (IS) therapy, yet the mechanism remains elusive. The current study was performed with an aim to investigate the action and mechanism of Tongqiao Huoxue decoction (TQHXD) affecting the neurological impairment secondary to IS based on network pharmacology. Based on network pharmacology and bioinformatics analysis, target genes and pathways involved in the treatment of TQHXD against IS were predicted. Serum containing TQHXD was prepared through blood collection from C57BL/6 mice after intragastric administration of TQHXD. The main results exhibited that Prostaglandin-endoperoxide synthase 2 (PTGS2) exhibited an abundance in IS and enrichment in the NF-kappa B signaling pathway, holding the potential as targets related to TQHXD treatment for IS. TQHXD was found to rescue cell viability, inhibit apoptosis, and alleviate inflammation under oxygen and glucose deprivation and reoxygenation (OGD/R) exposure. Furthermore, our in vivo experiment validated the protective function of TQHXD in ischemic brain damage stimulated by middle cerebral artery occlusion (MCAO). This protective action of TQHXD could be attenuated by overexpressing nuclear factor (NF)-kappa B, which was dependent on PTGS2. Collectively, TQHXD was demonstrated to ameliorate IS-induced neurological impairment by blocking the NF-kappa B signaling pathway and down-regulating PTGS2.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Mice , Animals , NF-kappa B/metabolism , Cyclooxygenase 2/metabolism , Mice, Inbred C57BL , Signal Transduction/genetics , Stroke/genetics , Brain Ischemia/genetics
3.
Ann Transl Med ; 10(14): 791, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35965824

ABSTRACT

Background: Traditional Chinese medicine (TCM) has become a crucial direction for ischemic stroke treatment. This study sought to explore the underlying roles of YaoYi-moxibustion (YY-moxi) in ischemic stroke. Methods: A total of 75 Sprague-Dawley rats were randomly divided into the following 5 groups: (I) the sham-operated group; (II) the middle cerebral artery occlusion model (MCAO) group; (III) the YY-moxi group; (IV) the antioxidant (N-acetylcysteine, NAC) group; and (V) the NAC + YY-moxi group. After the model had been established, the NAC group received intracerebroventricular injections of NAC, the YY-moxi group received YY-moxi, and the NAC + YY-moxi group received a combination of these 2 interventions. The neurological deficit score was confirmed, and the cerebral infarction was examined by triphenyl tetrazolium chloride (TTC) staining. In the ischemia site of stroke, terminal deoxynucleotidyl transferase-mediated Dutp nick end labeling staining was applied to examine the apoptotic cells. Additionally, the apoptosis-associated genes and protein expressions in the ischemic brains were investigated by the reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), immunohistochemistry, and western blot analysis. Results: YY-moxi alone and YY-moxi combined with NAC significantly reduced the neurological scores and cerebral infarction area of the MCAO rats. Additionally, YY-moxi alone and the combined application of YY-moxi and NAC improved the pathological status of ischemic brain tissues. Further, we found that YY-moxi alone and YY-moxi in combination with NAC could enhanced the antioxidation ability and reduced the inflammatory response of the MCAO model rats. We also proved that YY-moxi alone and YY-moxi combined with NAC significantly suppressed apoptosis-related proteins in the MCAO model rats. Conclusions: These findings indicate that YY-moxi exerts a protective effect on cerebral ischemic injury by reducing apoptosis. The study suggests that the mechanism may be related to its downregulating the expression of nuclear factor kappa B (NK-κB).

4.
J Gastrointest Oncol ; 12(6): 3079-3092, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35070431

ABSTRACT

BACKGROUND: With high incidence and mortality rates, hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors worldwide. Chronic hepatitis B virus (HBV) infection is a leading cause of HCC, especially for Asians and blacks. However, the molecular mechanisms underlying HBV-related HCC are unclear. This study sought to identify novel prognostic biomarkers and explore the potential pathogenesis of HBV-related HCC. METHODS: The gene expression profiles and corresponding clinical information of HCC from The Cancer Genome Atlas Liver Hepatocellular Carcinoma data set were analyzed by a weighted gene co-expression network analysis. Correlations between the co-expression modules and clinical traits were calculated. Next, key modules associated with HBV infection were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted for the genes in the key modules. The hub genes were identified based on the protein-protein interaction (PPI) network via the Cytoscape. Finally, an overall survival (OS) analysis was performed. RESULTS: The two modules (i.e., the brown and yellow modules) most relevant to HBV infection were constructed. A functional enrichment analysis revealed that the genes in the two modules were mainly enriched in HCC-related pathways, such as the phosphatidylinositol-3-kinase and protein kinase B signaling pathway, focal adhesion, human papillomavirus infection, the Rap1 signaling pathway, and the cyclic guanosine monophosphate-dependent protein kinase (cGMP-PKG) signaling pathway. Ten hub genes [i.e., COL3A1, ANTXR1, COL14A1, THBS2, ADAMTS2, AEBP1, PRELP, EMILIN1, DCN and PODN] in the brown module, and 10 hub genes [i.e., USP34, SEC24C, ZNF770, STAG1, TSTD2, PKD1P6, CCNK, GFT2I, NT5C2 and SMG6] in the yellow module were identified. Among the hub genes, ANTXR1 (Anthrax-toxin receptor 1) was significantly correlated with HBV-related HCC patients' OS. CONCLUSIONS: ANTXR1 represents a potential therapeutic target for HBV-related HCC. This study offers novel insights into the molecular mechanisms of HBV-induced tumorigenesis, which needs to be further validated by basic experiments and large-scale cohort studies.

5.
Neuroscience ; 435: 1-9, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32112919

ABSTRACT

Traditional Chinese medicine has been reported to influence the proliferation and differentiation of neural stem cells (NSCs) that may be protective against nervous system diseases. Recent evidence indicates the importance of musk ketone in nerve recovery and preventing secondary damage after cerebral ischemic injury. A middle cerebral artery occlusion (MCAO) rat model was established by a transient filament model, and rats were treated with musk ketone (0.9 or 1.8 µM). Next, an in vitro oxygen-glucose deprivation (OGD) cell model was established to study the effect of musk ketone on the proliferation and differentiation of NSCs. To determine the potential mechanisms of musk ketone involved in activities of NSCs, the effect of musk ketone on the PI3K/Akt signaling pathway activation was assessed. Furthermore, NSCs were treated with musk ketone in the presence of PI3K/Akt inhibitor Akti-1/2 to examine their roles on NSC proliferation and differentiation. Musk ketone reduced cerebral ischemic injury in a dose-dependent manner in rats. In addition, NSCs treated with musk ketone showed enhanced proliferation and differentiation along with increased PI3K/Akt signaling pathway activation. The effects of muck ketone were reversed by Akti-1/2. Altogether, musk ketone promoted NSC proliferation and differentiation and protected against cerebral ischemia by activating the PI3K/Akt signaling pathway, highlighting the potential of musk ketone as a physiologically validated approach for the treatment of cerebral ischemia.


Subject(s)
Brain Ischemia , Neural Stem Cells , Animals , Brain Ischemia/drug therapy , Cell Differentiation , Cell Proliferation , Neural Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction , Xylenes
6.
J Cell Physiol ; 234(12): 23448-23460, 2019 12.
Article in English | MEDLINE | ID: mdl-31222746

ABSTRACT

The objective of the current study is to investigate the effect of PTGS2 on proliferation, migration, angiogenesis and apoptosis of endothelial progenitor cells (EPCs) in mice with ischemic stroke through the NF-κB signaling pathway. Middle cerebral artery occlusion (MCAO) model was established in mice. EPCs were identified, in which ectopic expression and depletion experiments were conducted. The mRNA and protein expression of related factors in tissues and cells were measured. Besides, proliferation, migration, angiogenesis, and apoptosis, as well as cell cycle distribution, of cells were determined. MCAO mice showed overexpression of interleukin-6 (IL-6), IL-17, and IL-23, and increased positive protein expression of PTGS2, as well as expression of PTGS2, nuclear factor-κB (NF-κB), tumor suppressor region 1 (TSP-1) and Bcl-2-associated X protein (Bax), but underexpression of vascular endothelial growth factor (VEGF), S-phase kinase associated protein 2 (Skp2), and B-cell lymphoma 2 (Bcl-2). Moreover, ectopic expression of tumor necrosis factor-α significantly elevated the expression of PTGS2, NF-κB, TSP-1, and Bax, as well as cell apoptosis and cell cycle arrest, but decreased the expression of VEGF, Skp2, and Bcl-2, as well as proliferation, migration and angiogenesis of EPCs, and the PTGS2-siRNA group showed an opposite trend. Taken together, we conclude that the specific knockdown of PTGS2 expression could repress the NF-κB signaling pathway, thereby inhibits apoptosis and promotes proliferation, migration and angiogenesis of EPCs, providing protective effect on mice with ischemic stroke.


Subject(s)
Brain/blood supply , Cyclooxygenase 2/genetics , Endothelial Progenitor Cells/metabolism , Gene Silencing , Infarction, Middle Cerebral Artery/metabolism , NF-kappa B/metabolism , Neovascularization, Physiologic , Angiogenic Proteins/metabolism , Animals , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Cell Cycle Checkpoints , Cell Movement , Cell Proliferation , Cells, Cultured , Cyclooxygenase 2/metabolism , Disease Models, Animal , Endothelial Progenitor Cells/pathology , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Inflammation Mediators/metabolism , Male , Mice , Signal Transduction
7.
Biosci Rep ; 39(6)2019 06 28.
Article in English | MEDLINE | ID: mdl-30926681

ABSTRACT

The aberrant expression of lncRNAs has been inferred to be closely related with the progression of neural ischemia/reperfusion (I/R) injury. RMRP is an lncRNA associated with I/R injury. In order to determine the role of RMRP in I/R injury, the effects of RMRP knockdown on oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced injury in SH-SY5Y cells were evaluated. The effect of OGD/R administration on the expression of RMRP and apoptosis in SH-SY5Y cells, and the effect of RMRP suppression by siRNA on the impairments of cells proliferation and mobility potential due to OGD/R administration were assessed in the current study. At the molecular level, the current study detected the expressions of indicators involved in autophagy and PI3K/Akt/mTOR-mediated apoptosis pathways. The OGD/R administration induced the expression of RMRP and apoptosis in SH-SY5Y cells. After RMRP knockdown, the proliferation potential of SH-SY5Y cells was restored, and apoptosis and cell cycle arrest were inhibited. Moreover, RMRP inhibition also increased the invasion and migration of SH-SY5Y cells which were treated with OGD/R. The effects of RMRP suppression on the phenotypes of SH-SY5Y were associated with the inhibition of LC3II, p-PI3K, p-Akt, and p-mTOR as well as the induction of P62 and Bcl-2. Inhibition of RMRP contributed to the improvement of OGD/R-induced neuronal injury, which might be mediated through the inhibition of autophagy and apoptosis pathways.


Subject(s)
Apoptosis/genetics , Autophagy/genetics , RNA, Long Noncoding/genetics , Reperfusion Injury/genetics , Cell Cycle Checkpoints/genetics , Cell Proliferation/genetics , Gene Expression Regulation/genetics , Gene Knockdown Techniques , Glucose/metabolism , Humans , Neurons/metabolism , Neurons/pathology , Oxygen/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Long Noncoding/antagonists & inhibitors , RNA, Small Interfering/genetics , RNA-Binding Proteins/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction , TOR Serine-Threonine Kinases/genetics
8.
Phytomedicine ; 20(11): 1039-45, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23746756

ABSTRACT

PURPOSE: In this study we investigated antinociceptive effects of oxymatrine through regulation of NR2B-containing NMDA receptor-ERK/CREB signaling in a chronic neuropathic pain model induced by chronic constrictive injury (CCI) of the sciatic nerve. METHODS: The von Frey and plantar tests were performed to assess the degree of mechanical and thermal changes respectively. Immunohistochemistry assay was used to evaluate the expressions of NR2B. Western blotting assay were used to evaluate the expressions of NR2B, tERK, p-ERK, tCREB and p-CREB. RESULTS: The intraperitoneal administration of OMT (160, 80 mg/kg) could prevent the development of mechanical allodynia, thermal hyperalgesia induced by CCI. Intraperitoneal administration of OMT decreased the mean IOD of NR2B in the dorsal horn and expression of NR2B, p-ERK and p-CREB protein. CONCLUSION: Regulation of NMDA NR2B receptor-ERK/CREB signaling maybe the targets for the antinociceptive effects of OMT on a chronic neuropathic pain model induced by chronic constrictive injury of the sciatic nerve.


Subject(s)
Alkaloids/therapeutic use , Analgesics/therapeutic use , Neuralgia/drug therapy , Phytotherapy , Quinolizines/therapeutic use , Receptors, N-Methyl-D-Aspartate/metabolism , Sciatic Nerve/drug effects , Sophora/chemistry , Alkaloids/pharmacology , Analgesics/pharmacology , Animals , Chronic Pain/drug therapy , Chronic Pain/metabolism , Constriction , Cyclic AMP Response Element-Binding Protein/metabolism , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Hyperalgesia/metabolism , Hyperalgesia/prevention & control , Male , Mice , Mice, Inbred ICR , Neuralgia/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Quinolizines/pharmacology , Sciatic Nerve/injuries , Sciatic Nerve/pathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...