Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 23(1): 151, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755636

ABSTRACT

BACKGROUND: Sporozoite invasion of hepatocytes is an essential step in the Plasmodium life-cycle and has similarities, at the cellular level, to merozoite invasion of erythrocytes. In the case of the Plasmodium blood-stage, efforts to identify host-pathogen protein-protein interactions have yielded important insights including vaccine candidates. In the case of sporozoite-hepatocyte invasion, the host-pathogen protein-protein interactions involved are poorly understood. METHODS: To gain a better understanding of the protein-protein interaction between the sporozoite ligands and host receptors, a systematic screen was performed. The previous Plasmodium falciparum and human surface protein ectodomain libraries were substantially extended, resulting in the creation of new libraries comprising 88 P. falciparum sporozoite protein coding sequences and 182 sequences encoding human hepatocyte surface proteins. Having expressed recombinant proteins from these sequences, a plate-based assay was used, capable of detecting low affinity interactions between recombinant proteins, modified for enhanced throughput, to screen the proteins for interactions. The novel interactions identified in the screen were characterized biochemically, and their essential role in parasite invasion was further elucidated using antibodies and genetically manipulated Plasmodium parasites. RESULTS: A total of 7540 sporozoite-hepatocyte protein pairs were tested under conditions capable of detecting interactions of at least 1.2 µM KD. An interaction between the human fibroblast growth factor receptor 4 (FGFR4) and the P. falciparum protein Pf34 is identified and reported here, characterizing its affinity and demonstrating the blockade of the interaction by reagents, including a monoclonal antibody. Furthermore, further interactions between Pf34 and a second P. falciparum rhoptry neck protein, PfRON6, and between human low-density lipoprotein receptor (LDLR) and the P. falciparum protein PIESP15 are identified. Conditional genetic deletion confirmed the essentiality of PfRON6 in the blood-stage, consistent with the important role of this protein in parasite lifecycle. Pf34 was refractory to attempted genetic modification. Antibodies to Pf34 abrogated the interaction and had a modest effect upon sporozoite invasion into primary human hepatocytes. CONCLUSION: Pf34 and PfRON6 may be members of a functionally important invasion complex which could be a target for future interventions. The modified interaction screening assay, protein expression libraries and P. falciparum mutant parasites reported here may be a useful tool for protein interaction discovery and antigen candidate screening which could be of wider value to the scientific community.


Subject(s)
Hepatocytes , Plasmodium falciparum , Protozoan Proteins , Sporozoites , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Hepatocytes/parasitology , Humans , Sporozoites/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Host-Pathogen Interactions , Membrane Proteins/genetics , Membrane Proteins/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Host-Parasite Interactions , Protein Binding
2.
Mol Cell Proteomics ; 20: 100038, 2021.
Article in English | MEDLINE | ID: mdl-33515807

ABSTRACT

Sporozoites are a motile form of malaria-causing Plasmodium falciparum parasites that migrate from the site of transmission in the dermis through the bloodstream to invade hepatocytes. Sporozoites interact with many cells within the host, but the molecular identity of these interactions and their role in the pathology of malaria is poorly understood. Parasite proteins that are secreted and embedded within membranes are known to be important for these interactions, but our understanding of how they interact with each other to form functional complexes is largely unknown. Here, we compile a library of recombinant proteins representing the repertoire of cell surface and secreted proteins from the P. falciparum sporozoite and use an assay designed to detect extracellular interactions to systematically identify complexes. We identify three protein complexes including an interaction between two components of the p24 complex that is involved in the trafficking of glycosylphosphatidylinositol-anchored proteins through the secretory pathway. Plasmodium parasites lacking either gene are strongly inhibited in the establishment of liver-stage infections. These findings reveal an important role for the p24 complex in malaria pathogenesis and show that the library of recombinant proteins represents a valuable resource to investigate P. falciparum sporozoite biology.


Subject(s)
Host-Parasite Interactions , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Sporozoites/metabolism , Animals , Female , Malaria/parasitology , Mice, Inbred BALB C , Organisms, Genetically Modified , Phenotype , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Plasmodium falciparum/physiology , Protein Interaction Maps , Protozoan Proteins/genetics , Recombinant Proteins/metabolism , Sporozoites/physiology
3.
Trends Parasitol ; 35(2): 129-139, 2019 02.
Article in English | MEDLINE | ID: mdl-30583849

ABSTRACT

Malaria is an infectious disease, caused by Plasmodium parasites, that remains a major global health problem. Infection begins when salivary gland sporozoites are transmitted through the bite of an infected mosquito. Once within the host, sporozoites navigate through the dermis, into the bloodstream, and eventually invade hepatocytes. While we have an increasingly sophisticated cellular description of this journey, our molecular understanding of the extracellular interactions between the sporozoite and mammalian host that regulate migration and invasion remain comparatively poor. Here, we review the current state of our understanding, highlight the technical limitations that have frustrated progress, and outline how new approaches will help to address this knowledge gap with the ultimate aim of improving malaria treatments.


Subject(s)
Extracellular Space/parasitology , Host-Parasite Interactions/physiology , Malaria , Plasmodium/physiology , Sporozoites/physiology , Animals , Humans , Malaria/parasitology , Malaria/physiopathology , Protozoan Proteins/metabolism
4.
Proc Natl Acad Sci U S A ; 115(17): 4477-4482, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29632205

ABSTRACT

Malaria-causing Plasmodium sporozoites are deposited in the dermis by the bite of an infected mosquito and move by gliding motility to the liver where they invade and develop within host hepatocytes. Although extracellular interactions between Plasmodium sporozoite ligands and host receptors provide important guidance cues for productive infection and are good vaccine targets, these interactions remain largely uncharacterized. Thrombospondin-related anonymous protein (TRAP) is a parasite cell surface ligand that is essential for both gliding motility and invasion because it couples the extracellular binding of host receptors to the parasite cytoplasmic actinomyosin motor; however, the molecular nature of the host TRAP receptors is poorly defined. Here, we use a systematic extracellular protein interaction screening approach to identify the integrin αvß3 as a directly interacting host receptor for Plasmodium falciparum TRAP. Biochemical characterization of the interaction suggests a two-site binding model, requiring contributions from both the von Willebrand factor A domain and the RGD motif of TRAP for integrin binding. We show that TRAP binding to cells is promoted in the presence of integrin-activating proadhesive Mn2+ ions, and that cells genetically targeted so that they lack cell surface expression of the integrin αv-subunit are no longer able to bind TRAP. P. falciparum sporozoites moved with greater speed in the dermis of Itgb3-deficient mice, suggesting that the interaction has a role in sporozoite migration. The identification of the integrin αvß3 as the host receptor for TRAP provides an important demonstration of a sporozoite surface ligand that directly interacts with host receptors.


Subject(s)
Integrin alphaVbeta3/metabolism , Models, Biological , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Sporozoites/metabolism , Animals , HEK293 Cells , Humans , Integrin alphaVbeta3/genetics , Mice , Mice, Knockout , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Protozoan Proteins/genetics , Sporozoites/genetics
5.
Cell Host Microbe ; 21(1): 11-22, 2017 Jan 11.
Article in English | MEDLINE | ID: mdl-28081440

ABSTRACT

A family of apicomplexa-specific proteins containing AP2 DNA-binding domains (ApiAP2s) was identified in malaria parasites. This family includes sequence-specific transcription factors that are key regulators of development. However, functions for the majority of ApiAP2 genes remain unknown. Here, a systematic knockout screen in Plasmodium berghei identified ten ApiAP2 genes that were essential for mosquito transmission: four were critical for the formation of infectious ookinetes, and three were required for sporogony. We describe non-essential functions for AP2-O and AP2-SP proteins in blood stages, and identify AP2-G2 as a repressor active in both asexual and sexual stages. Comparative transcriptomics across mutants and developmental stages revealed clusters of co-regulated genes with shared cis promoter elements, whose expression can be controlled positively or negatively by different ApiAP2 factors. We propose that stage-specific interactions between ApiAP2 proteins on partly overlapping sets of target genes generate the complex transcriptional network that controls the Plasmodium life cycle.


Subject(s)
DNA-Binding Proteins/genetics , Life Cycle Stages/genetics , Malaria/transmission , Plasmodium berghei/genetics , Protein Domains/genetics , Protozoan Proteins/genetics , Animals , Anopheles/parasitology , Apicomplexa/genetics , Female , Gene Knockout Techniques , Malaria/parasitology , Mice , Oocysts/cytology , Plasmodium berghei/growth & development , Protein Domains/physiology
6.
Biochem J ; 441(1): 435-42, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21967541

ABSTRACT

Platelets play a vital role in maintaining haemostasis. Human platelet activation depends on Ca2+ release, leading to cell activation, granule secretion and aggregation. NAADP (nicotinic acid-adenine dinucleotide phosphate) is a Ca2+-releasing second messenger that acts on acidic Ca2+ stores and is used by a number of mammalian systems. In human platelets, NAADP has been shown to release Ca2+ in permeabilized human platelets and contribute to thrombin-mediated platelet activation. In the present study, we have further characterized NAADP-mediated Ca2+ release in human platelets in response to both thrombin and the GPVI (glycoprotein VI)-specific agonist CRP (collagen-related peptide). Using a radioligand-binding assay, we reveal an NAADP-binding site in human platelets, indicative of a platelet NAADP receptor. We also found that NAADP releases loaded 45Ca2+ from intracellular stores and that total platelet Ca2+ release is inhibited by the proton ionophore nigericin. Ned-19, a novel cell-permeant NAADP receptor antagonist, competes for the NAADP-binding site in platelets and can inhibit both thrombin- and CRP-induced Ca2+ release in human platelets. Ned-19 has an inhibitory effect on platelet aggregation, secretion and spreading. In addition, Ned-19 extends the clotting time in whole-blood samples. We conclude that NAADP plays an important role in human platelet function. Furthermore, the development of Ned-19 as an NAADP receptor antagonist provides a potential avenue for platelet-targeted therapy and the regulation of thrombosis.


Subject(s)
Blood Platelets/metabolism , NADP/analogs & derivatives , Platelet Activation/physiology , Blood Platelets/drug effects , Calcium/metabolism , Calcium Signaling/physiology , Carbolines/pharmacology , Carrier Proteins/metabolism , Humans , NADP/metabolism , Peptides/metabolism , Piperazines/pharmacology , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, G-Protein-Coupled/metabolism , Thrombin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...