Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Chem Biodivers ; : e202401273, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828879

ABSTRACT

Eight furostanol glycosides including five undescribed compounds, named tribufurostanosides A-E (1-5), and three known ones (6-8) were isolated from the fruits of Tribulus terrestris L. Their chemical structures were determined by the IR, HR-ESI-MS, 1D-, and 2D-NMR spectra. Furostanols 1-8 significantly inhibited nitric oxide production in LPS activated RAW 264.7 cells with IC50 values ranging from 14.2 to 64.7 µM, compared to that of the positive control compound, dexamethazone (IC50 13.6 µM).

2.
Chem Biodivers ; : e202401049, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757233

ABSTRACT

Four undescribed spirostan glycosides, (25S)-5α-spirostan-12-one-2α,3ß-diol-3-O-ß-D-glucopyranosyl-(1→4)-ß-D-galactopyranoside (1), (25S)-5α-spirostan-12-one-2α,3ß-diol-3-O-ß-D-galatopyranosyl-(1→2)-ß-D-glucopyranosyl-(1→4)-ß-D-galactopyranoside (2), (25S)-5α-spirostan-12-one-2α,3ß-diol-3-O-ß-D-glucopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→3)]-ß-D-glucopyranosyl-(1→4)-ß-D-galactopyranoside (3), and hecogenin 3-O-ß-D-glucopyranosyl-(1→3)-[ß-D-xylopyranosyl-(1→2)]-ß-D-glucopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-ß-D-galactopyranoside (4), together with eleven known compounds (5-15) were isolated from the branches and leaves of Tribulus terrestris. Their chemical structures were established through spectroscopic methods. including HR-ESI-MS, 1D-, and 2D-NMR spectra. Preliminary biological evaluation on NO production inhibitory activity in LPS activated RAW 264.7 cells showed that compounds 1-3, 5, and 6 had significant inhibitory effects with IC50 values ranging from 2.4 to 18.3 µM, compared to that of the positive control compound, dexamethazone (IC50 13.6 µM).

3.
Chem Biodivers ; : e202401118, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790139

ABSTRACT

Phytochemical study on the methanol extract of the stem barks of Aphanamixis polystachya led to the isolation of four previously undescribed ( 1-4) and ten known compounds (5-14). Their chemical structures were elucidated to be 11-methoxysawaranospiroride C (1), 6α,9S,10,13-tetrahydroxymegastigmane-3-one (2), 11-hydroxyaphanamixin B (3), (2Z,6E,13E)-2,6,13-triene-11,15-dihydroxyphytanic acid (4), cinnacasside D (5), cinnacasside E (6), vilsonol F (7), (3S,5R,6S,7E,9R)-3,5,6,9-tetrahydroxy-7-en-megastigmane (8), (3S,5R,6R,7E,9R)-3,6,9,10-tetrahydroxy-7-en-megastigmane (9), citroside A (10), threo-1-(3,4,5-trimethoxyphenyl)-1,2,3-propanetriol (11), 3,4,5-trimethoxyphenyl-1-O-ß-D-glucopyranoside (12), p-coumaric acid (13), ferulic acid (14) by HR-ESI-MS, ECD, 1D-, and 2D-NMR spectra. Compounds 1, 3, 4, and 9 showed NO production inhibitory activity in LPS activated RAW 264.7 cells with IC50 values of 42.0, 67.9, 20.5, and 78.6 µM, respectively, while the remaining compounds were inactive with IC50 values over 100 µM.

4.
RSC Adv ; 14(17): 12147-12157, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38628471

ABSTRACT

In this study, seven new pentacyclic triterpene glycosides, named dendrocinaosides A-G (1-7), and six known ones (8-13) were isolated from the whole plants of Dendrobium officinale. Their structures were determined by analyses of HR-ESI-MS, 1D and 2D NMR spectra. Compounds 1-4, 8, and 9 potentially inhibited α-glucosidase and α-amylase activities with the IC50 values ranging from 31.3 ± 2.2 to 42.4 ± 2.5 µM for anti α-glucosidase and from 36.5 ± 1.8 to 56.4 ± 2.0 µM for anti α-amylase activities, respectively, which were lower than that of the positive control, acarbose, showing IC50 values of 47.1 ± 1.4 µM for anti α-glucosidase and 145.7 ± 2.2 µM for anti α-amylase.

5.
J Nat Med ; 78(3): 741-752, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38573418

ABSTRACT

In this study, nine triterpene glycosides including seven previously undescribed compounds (1-7), were isolated from leaves of Cryptolepis buchananii R.Br. ex Roem. and Schult. using various chromatographic methods. The chemical structures of the compounds were elucidated to be 3-O-ß-D-glucopyranosyl-(1 → 6)-ß-D-glucopyranosyluncargenin C 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (1), 3-O-ß-D-glucopyranosyl-(1 → 2)-ß-D-glucopyranosyluncargenin C 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (2), 3-O-ß-D-glucopyranosyl-(1 → 2)-ß-D-glucopyranosyluncargenin C 28-O-ß-D-glucopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (3), 3-O-ß-D-glucopyranosyl-(1 → 2)-ß-D-glucopyranosylhederagenin 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (4), 3-O-ß-D-glucopyranosylarjunolic acid 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (5), 3-O-ß-D-glucopyranosyl-(1 → 2)-ß- D-glucopyranosyl-6ß,23-dihydroxyursolic acid 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (6), 3-O-ß-D-glucopyranosyl-6ß,23-dihydroxyursolic acid 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (7), asiatic acid 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (8), and 3-O-ß-D-glucopyranosylasiatic acid 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (9), through infrared, high-resolution electrospray ionization mass spectrometry, one- and two-dimensional nuclear magnetic resonance spectral analyses. The isolates inhibited nitric oxide production in lipopolysaccharide-activated RAW 264.7 cells, with half-maximal inhibitory concentration (IC50) values of 18.8-58.5 µM, compared to the positive control compound, dexamethasone, which exhibited an IC50 of 14.1 µM.


Subject(s)
Glycosides , Nitric Oxide , Plant Leaves , Triterpenes , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Nitric Oxide/metabolism , Glycosides/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , Mice , Animals , Molecular Structure , Plant Leaves/chemistry , RAW 264.7 Cells , Plant Extracts/chemistry , Plant Extracts/pharmacology
6.
Fitoterapia ; 175: 105903, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479620

ABSTRACT

A phytochemical study of the aerial parts of Piper mutabile C. DC. revealed seven undescribed compounds [two (2-7')-neolignans and five polyoxygenated cyclohexene glycosides] and six known propenylcatechol derivatives. The chemical structures of the isolated compounds were elucidated by extensive HR-ESI-MS and NMR analyses, as well as comparison with the literature. The absolute configurations of the (2-7')-neolignans were confirmed by GIAO 13C NMR calculations with a sorted training set strategy and TD-DFT calculation ECD spectra. The (2-7')-neolignans and polyoxygenated cyclohexene glycosides are unusual in natural sources. Undescribed neolignans 1 and 2 inhibited NO production in RAW 264.7 cells, with respective IC50 values of 14.4 and 9.5 µM.


Subject(s)
Cyclohexenes , Glycosides , Lignans , Nitric Oxide , Phytochemicals , Piper , Plant Components, Aerial , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Nitric Oxide/antagonists & inhibitors , RAW 264.7 Cells , Mice , Piper/chemistry , Molecular Structure , Plant Components, Aerial/chemistry , Animals , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Lignans/pharmacology , Lignans/isolation & purification , Lignans/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , Glycosides/chemistry , Cyclohexenes/pharmacology , Cyclohexenes/isolation & purification , China
7.
Phytochemistry ; 220: 113997, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38244960

ABSTRACT

Aphanapolystachones A-C (1-3), three undescribed sesquiterpene-diterpene heterodimers, were obtained from the fruits of Aphanamixis polystachya. Their structures and absolute configurations were identified by extensive analysis of HR-ESI-MS, NMR, experimental and TD-DFT calculated ECD spectra. The biosynthetic pathway of them was also proposed, which is produced by key intermolecular Diels-Alder [4 + 2]-cycloaddition reaction between a guaiane sesquiterpene and an acyclic diterpene. Compounds 1-3 inhibited NO production in LPS activated RAW 264.7 cells with the IC50 values of 1.7 ± 0.2, 3.0 ± 0.3, 5.3 ± 0.3 µM, respectively, lower than that of the positive control L-NMMA (31.5 ± 2.6 µM). In addition, compounds 1-3 significantly reduced IL-6 secretion at diluted concentration of 0.4 µM.


Subject(s)
Diterpenes , Meliaceae , Sesquiterpenes , Animals , Mice , RAW 264.7 Cells , Fruit/chemistry , Magnetic Resonance Spectroscopy , Meliaceae/chemistry , Diterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/analysis , Molecular Structure
8.
Chem Biodivers ; 21(3): e202302123, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253808

ABSTRACT

Three previously undescribed compounds named rauvolphyllas A-C (1-3), along with thirteen known compounds, 18ß-hydroxy-3-epi-α-yohimbine (4), yohimbine (5), α-yohimbine (6), 17-epi-α-yohimbine (7), (E)-vallesiachotamine (8), (Z)-vallesiachotamine (9), 16S-E-isositsirikine (10), Nb -methylisoajimaline (11), Nb -methylajimaline (12), ajimaline (13), (+)-lyoniresinol 3α-O-ß-D-glucopyranoside (14), (+)-isolarisiresinol 3α-O-ß-D-glucopyranoside (15), and (-)-lyoniresinol 3α-O-ß-D-glucopyranoside (16) were isolated from the aerial parts of Rauvolfia tetraphylla L. Their chemical structures were elucidated based on the extensive spectroscopic interpretation of HR-ESI-MS, 1D and 2D NMR spectra. The absolute configurations of 2 and 3 were determined by experimental ECD spectra. Compounds 5, 6, 7, and 11-13 exhibited nitric oxide production inhibition activity in LPS-activated RAW 264.7 cells with the IC50 values of 79.10, 44.34, 51.28, 33.54, 37.67, and 28.56 µM, respectively, compared to that of the positive control, dexamethasone, which showed IC50 value of 13.66 µM. The other isolates were inactive with IC50 values over 100 µM.


Subject(s)
Alkaloids , Anisoles , Lignans , Naphthalenes , Rauwolfia , Animals , Mice , Lignans/chemistry , RAW 264.7 Cells , Lipopolysaccharides/pharmacology , Nitric Oxide , Alkaloids/analysis , Magnetic Resonance Spectroscopy , Plant Components, Aerial/chemistry , Yohimbine , Molecular Structure
9.
Chem Biodivers ; 21(3): e202302105, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38269614

ABSTRACT

Four previously undescribed compounds named phyllancosides A and B (1 and 2), and phyllancochines A and B (3 and 4) together with ten known compounds (5-14) were isolated from the aerial parts of Phyllanthus cochinchinensis Spreng. Their chemical structures were elucidated on the basis of comprehensive analysis of IR, HR-ESI-MS, 1D and 2D NMR spectra. The absolute configurations of 1 and 2 were determined by electronic circular dichroism (ECD) spectra. Compounds 3, 4, and 10 showed antimicrobial activity against E. faecalis, S. aureus, and B. cereus with the MIC values in range of 32-256 µg/mL. Compound 11 inhibited E. faecalis and B. cereus, and 7 inhibited S. aureus with the MIC values in range of 64-128 µg/mL. In addition, compounds 1, 3, 4, 8, and 9 showed significantly NO production inhibitory activity in LPS activated RAW 264.7 cells with IC50 values ranging from 36.57 to 56.34 µM.


Subject(s)
Anti-Infective Agents , Lipopolysaccharides , Animals , Mice , RAW 264.7 Cells , Molecular Structure , Lipopolysaccharides/pharmacology , Staphylococcus aureus , Nitric Oxide , Plant Components, Aerial/chemistry , Anti-Infective Agents/analysis
10.
Chem Biodivers ; 21(3): e202400124, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279623

ABSTRACT

Two undescribed triterpenes, syzyfolium A (1) and syzyfolium B (2), together with twelve known compounds, terminolic acid (3), actinidic acid (4), piscidinol A (5), threo-dihydroxydehydrodiconiferyl alcohol (6), lariciresinol-4-O-ß-D-glucoside (7), icariol A2 (8), 14ß,15ß-dihydroxyklaineanone (9), garcimangosone D (10), (+)-catechin (11), myricetin-3-O-α-L-rhamnopyranoside (12), quercitrin (13), and 3, 4, 5-trimethoxyphenyl-(6'-O-galloyl)-O-ß-D-glucopyranoside (14) were isolated from the leaves of Syzygium myrsinifolium. Their chemical structures were determined by IR, HR-ESI-MS, 1D and 2D NMR spectra. Compounds 3 and 4 inhibited significantly α-glucosidase with IC50 values of 23.99 and 36.84, respectively, and compounds 1 and 2 inhibited significantly α-amylase with IC50 values of 35.48 and 43.65 µM, respectively.


Subject(s)
Syzygium , Triterpenes , Syzygium/chemistry , alpha-Glucosidases , Plant Extracts/pharmacology , Triterpenes/pharmacology , alpha-Amylases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry
11.
Nat Prod Res ; 38(5): 759-767, 2024.
Article in English | MEDLINE | ID: mdl-37005002

ABSTRACT

Four new glycosides, named amplexicosides A-D (1-4), and five known compounds: benzyl 2-[ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyloxy]-benzoate (5), benzyl 2-neohesperidosyloxy-6-hydroxybenzoate (6), chrysandroside A (7), chrysandroside B (8) and camelliquercetiside C (9) were isolated from the branches and leaves of Camellia amplexicaulis (Pit.) Cohen-Stuart. Their structures were elucidated using HR-ESI-MS and 1D- and 2D-NMR spectra and compared to reported NMR data. All of the isolated compounds were screened in an α-glucosidase assay. Compounds 4, 8, and 9 significantly inhibited α-glucosidase with respective IC50 values of 254.9 ± 4.2, 304.8 ± 11.9 and 228.1 ± 16.4 µM.


Subject(s)
Camellia , Cardiac Glycosides , Glycosides/pharmacology , Glycosides/chemistry , alpha-Glucosidases , Molecular Structure , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry
12.
Chem Biodivers ; 21(2): e202301764, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38050750

ABSTRACT

Dracaena cambodiana Pierre ex Gagnep. is well known as a medicinal plant and widely distributed in Vietnam. Phytochemical investigation on the trunks of D. cambodiana lead to the isolation of four undescribed compounds (1-4) together with seven known ones (5-11). Their structures were determined to be pennogenin-24-yl-O-ß-D-glucopyranoside (1), 17α-hydroxycambodianoside C (2), (25R)-27-hydroxypenogenin 3-O-α-L-rhamnopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→2)]-ß-D-glucopyranoside (3), (3ß,25R)-17α,22α-dihydroxy-furost-5-en-3-yl-O-α-L-rhamnopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→2)]-ß-D-glucopyranoside (4), dracagenin A (5), 1-O-ß-D-glucopyranosyl-2-hydroxy-4-allylbenzene (6), 1-O-α-L-rhamnopyranosyl-(1→6)-ß-D-glucopyranosyl-2-hydroxy-allylbenzene (7), 2-O-α-L-rhamnopyranosyl-(1→6)-ß-D-glucopyranosyl-1-hydroxy-allylbenzene (8), cinnamrutinoside A (9), icariside D1 (10), and seco-isolariciresinol 9-O-ß-glucopyranoside (11) by extensive spectroscopic investigation, HR-ESI-MS, 1D and 2D NMR spectra. The anti-inflammatory activity of the isolated compounds was evaluated on macrophages. Compounds 1-6 significantly inhibited nitric oxide production in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Among them, compound 1 showed the best inhibitory activity with an IC50 value of 8.90±0.56 µM.


Subject(s)
Allylbenzene Derivatives , Dracaena , Saponins , Lipopolysaccharides/pharmacology , Molecular Structure , Nitric Oxide , Saponins/pharmacology , Saponins/chemistry , Glucosides/chemistry , Glucosides/pharmacology
13.
Chem Biodivers ; 21(2): e202301963, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38117264

ABSTRACT

Seven steroidal saponins including three new 16,23-cyclocholestanes (1-3) and one new pregane (4) were isolated from the roots of Dracaena cambodiana Pierre ex Gagnep. Their chemical structures were elucidated to be (23R,25R)-26-O-ß-D-glucopyranosyl-16,23-cyclocholesta-5,17(20)-dien-22-one-3ß,16α,26-triol-3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→3)]-ß-D-glucopyranoside (1), (23R,25R)-26-O-ß-D-glucopyranosyl-16,23-cyclocholesta-5,17,20(22)-trien-3ß,22,26-triol-3-O-α-L-rhamnopyranosyl-(1→3)-ß-D-glucopyranoside (2), (23R,25R)-16,23-cyclocholesta-5,16,20(22)-trien-3ß,22,26-triol-3-O-α-L-rhamnopyranosyl-(1→3)-ß-D-glucopyranoside (3), 3ß-[(O-α-L-rhamnopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→2)]-ß-D-gluco-pyranosyl)oxy]-pregna-5,17(20)-diene-16-one-20-carboxylic acid 4''''-O-ß-D-glucopyranosylisopentyl ester (4), cambodianoside A (5), diosbulbiside C (6), and diosbulbiside D (7), by IR, HR-ESI-MS, 1D and 2D NMR spectra. Compounds 1 and 4-7 inhibited nitric oxide (NO) production in lipopolysaccharide activated RAW 264.7 cells with IC50 values ranging from 19.03±1.84 to 67.92±3.81 µM, whereas compounds 2 and 3 were inactive with IC50 values over 100 µM.


Subject(s)
Dracaena , Lipopolysaccharides , Saponins , Mice , Animals , Lipopolysaccharides/pharmacology , Nitric Oxide , RAW 264.7 Cells , Trientine , Saponins/pharmacology , Saponins/chemistry , Molecular Structure
14.
Chem Biodivers ; 20(11): e202301296, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37842907

ABSTRACT

Vitex trifolia L. is a medicinal plant and widely distributed in the northern mountainous areas of Vietnam. Phytochemical study on the fruits of this plant led to the isolation of nine iridoid derivatives (1-9) including three undescribed compounds (1-3). Their structures were elucidated to be 3''-hydroxyscrophuloside A1 (1), 3''-hydroxycallicoside D (2), 2'-p-hydroxybenzoylaucubin (3), 6'-p-hydroxybenzoylmussaenosidic acid (4), nishindaside (5), agnuside (6), 10-O-vanilloylaucubin (7), 6'-O-p-hydroxybenzoyl-gardoside (8), and buddlejoside B (9) based on extensive analyses of HR-ESI-MS, 1D and 2D NMR spectra. Compounds 1, 2, 4, and 8 significantly posessed anti-barterial activity against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa strains with MIC values in range of 16-64 µg/mL. At concentration of 20 µM, compounds 1-9 did not show cytotoxic effects against human lung cancer cells (PC9).


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Vitex , Humans , Iridoids/chemistry , Vitex/chemistry , Fruit/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/analysis , Plant Extracts/analysis
15.
Chem Biodivers ; 20(8): e202300853, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37409765

ABSTRACT

A chemical study of the methanol extract of the aerial parts of Achyranthes aspera led to the isolation of four new flavonoid C-glycosides (1-4) along with eight known analogs (5-12). Their structures were elucidated by a combination of spectroscopic data analysis, HR-ESI-MS, 1D and 2D NMR spectra. All the isolates were evaluated their NO production inhibitory activity in LPS-activated RAW264.7 cells. Compounds 2, 4, and 8-11 showed significant inhibition with IC50 values ranging from 25.06 to 45.25 µM, compared to that of the positive control compound, L-NMMA, IC50 value of 32.24 µM, whereas the remaining compounds were weak inhibitory activity with IC50 values over 100 µM. This is the first report of 7 from Amaranthaceae family, and 11 from the genus Achyranthes.


Subject(s)
Achyranthes , Flavonoids , Flavonoids/pharmacology , Flavonoids/chemistry , Achyranthes/chemistry , Nitric Oxide , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glycosides/pharmacology , Glycosides/chemistry , Molecular Structure
16.
Fitoterapia ; 169: 105609, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37453701

ABSTRACT

Five new flavonoid C-glycosides named desmodinosides A-E (1-5) and one known compound, apigenin 6-C-ß-d-xylopyranosyl-2''-O-ß-D-glucopyranoside (6) have been isolated from the methanol extract of the aerial parts of Desmodium heterocarpon var. stigosum. These compounds were determined by 1D and 2D-NMR and HR-MS spectroscopies. The methanol extract of this plant, in particular, demonstrated hepatoprotection and antifungal inhibition. This extract has a remarkable hepatoprotection and activity-dose response with an EC50 of 43.07 µg/mL. The hepatoprotective effect on human liver hepatoma cells (HepG2) of the isolated flavonoid C-glycosides 1-6 was observed. Desmodinosides A-C (1-3) were found to exhibit moderate hepatoprotective activity on HepG2 cells. Of these, compound 2 showed the best hepatoprotective activity with an EC50 value of 74.12 µg/mL. While compounds 1 and 3 displayed EC50 values of 271.21 and 211.99 µg/mL, respectively. Quercetin, a positive control, also caused an EC50 value of 36.42 µg/mL. In addition to having hepatoprotective effect, the methanol extract had an inhibitory effect on the growth of oomycete; it inhibited Phytophthora infestans with IC50 of 13.3 µg/mL and IC90 of 78.7 µg/mL. The oomycete inhibition was directly attributed to compounds 5 and 6, which significantly inhibited P. infestans with IC50 values of 27.4 and 24.7 µg/mL, respectively. Both 5 and 6 and methanol extract were active against P. infestanse in a dose-dependent manner. Our study demonstrated for the first time the new flavonoid C-glycosides from D. heterocarpon var. stigosum and their novel pharmacological properties. The study findings also suggest the plant extract and its metabolites could be used as a new botanical source of bioactive compounds.


Subject(s)
Antifungal Agents , Flavonoids , Humans , Antifungal Agents/pharmacology , Methanol , Molecular Structure , Glycosides , Plant Extracts/chemistry
17.
Phytochemistry ; 214: 113792, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37454887

ABSTRACT

Phytochemical study on the methanol extract of Aglaia odorata leaves resulted in the isolation of four previously undescribed compounds, including three 2,9-deoxyflavonoids and one flavonol-diamide [3 + 2] adduct, and 13 known compounds. The chemical structures of the four undescribed compounds were elucidated on the basis of their IR, HR-ESI-MS, 1D and 2D NMR, and ECD spectra. The results revealed an unprecedented 2,9-deoxyflavonoid framework, which was confirmed by TD-DFT, ECD, and GIAO 13C-NMR calculations using sorted training set methods. The 17 compounds were examined for their ability to inhibit NO production activity in cultured lipopolysaccharide-activated RAW264.7 cells with aglaodoratas A-C, odorine, and epi-odorine inhibiting NO production, with IC50 values in the range of 16.2-24.3 µM. The other investigated compounds had either weak or no activity.


Subject(s)
Aglaia , Aglaia/chemistry , Diamide/analysis , Nitric Oxide , Plant Extracts/chemistry , Plant Leaves/chemistry , Molecular Structure
18.
J Nat Med ; 77(4): 964-971, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37358723

ABSTRACT

Three undescribed triterpene glycosides syzybullosides A-C (1-3) along with fourteen known compounds were isolated from the leaves of Syzygium bullockii (Hance) Merr.& L.M. Perry, including six triterpene glycosides (1-6), four phenolics (7-9, 17), four megastigmanes (10-13), and three flavonoids (14-16). The structures of 1-17 were elucidated by extensive spectroscopic analysis, including IR, HR-ESI-MS, 1D and 2D NMR spectra. Compounds 1-10 and 12-17 inhibited nitric oxide (NO) production in lipopolysaccharide activated RAW264.7 cells with IC50 values ranging from 1.30 to 13.70 µM, lower than that of the positive control compound, L-NMMA (IC50 = 33.8 µM).


Subject(s)
Syzygium , Triterpenes , Molecular Structure , Nitric Oxide , Glycosides/pharmacology , Glycosides/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry
19.
Chem Biodivers ; 20(6): e202300372, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37145919

ABSTRACT

From the fruits of Schisandra cauliflora, five new dimethylbutyrylated dibenzocyclooctadiene lignans, named schisandracaurins A-E, were isolated using separation and chromatographic techniques. Their structures were determined by extensive analyses of HR-ESI-MS, NMR, and ECD spectra. The schisandracaurins A-E potentially inhibited NO production in LPS-activated RAW264.7 cells with their IC50 values from 21.4 to 30.3 µM.


Subject(s)
Lignans , Schisandra , Schisandra/chemistry , Lipopolysaccharides/pharmacology , Molecular Structure , Fruit/chemistry , Lignans/chemistry , Cyclooctanes/pharmacology , Cyclooctanes/analysis , Cyclooctanes/chemistry
20.
Nat Prod Res ; 37(18): 3093-3102, 2023.
Article in English | MEDLINE | ID: mdl-36377760

ABSTRACT

A new megastigmane glycoside, (3S,4R,7E)-megastigma-5,7-diene-9-one-3,4-diol 3-O-ß-D-apiofuranosyl-(1→2)-ß-D-glucopyranoside (1) and a new cyanogenic glycosyl derivative, (S)-2-(6'-O-R-rosmarinoyl-ß-D-glucopyranosyloxy)-phenylacetonitrile (2) were isolated from the methanol extract of the Elsholtzia ciliata together with twelve known compounds, 1-O-ß-D-glucopyranosyl-2-hydroxy-4-allylbenzene (3), citrusin C (4), 1,2-di-O-ß-D-glucopyranosyl-4-allylbenzene (5), manglieside B (6), 4-allyl-2-hydroxyphenyl 1-O-ß-D-apiofuranosyl-(1→6)-ß-D-glucopyranoside (7), (-)-isolariciresinol 3α-ß-D-glucopyranoside (8), 7R,8R-threo-4,7,9-trihydroxy-3,3'-dimethoxy-8-O-4'-neolignan-9'-O-ß-D-glucopyranoside (9), 7R,8R-threo-4,7,9,9'-tetrahydroxy-3-methoxy-8-O-4'-neolignan-9'-O-ß-D-glucopyranoside (10), cedrusin-4-O-ß-D-glucopyranoside (11), icariside E3 (12), everlastoside L (13) and rosmarinic acid (14). Their chemical structures were elucidated on the basic of extensive 1D and 2D-NMR experiments, as well as their mass spectroscopic data. The absolute configurations of the compounds 1 and 2 were successfully indicated by both theoretical and calculated CD spectra. Compounds 3-7, 9 and 10 potential inhibited NO production in LPS-activated RAW264.7 cells with IC50 values of 6.71, 8.97, 12.38, 14.27, 16.13, 13.54, 16.27 µM, respectively, compared to that of the positive control of NG-monomethyl-L-arginine acetate (L-NMMA), IC50 = 32.51 µM.

SELECTION OF CITATIONS
SEARCH DETAIL
...