Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3704, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349307

ABSTRACT

At seasonal-to-interannual timescales, Atlantic hurricane activity is greatly modulated by El Niño-Southern Oscillation and the Atlantic Meridional Mode. However, those climate modes develop predominantly in boreal winter or spring and are weaker during the Atlantic hurricane season (June-November). The leading mode of tropical Atlantic sea surface temperature (SST) variability during the Atlantic hurricane season is Atlantic Niño/Niña, which is characterized by warm/cold SST anomalies in the eastern equatorial Atlantic. However, the linkage between Atlantic Niño/Niña and hurricane activity has not been examined. Here, we use observations to show that Atlantic Niño, by strengthening the Atlantic inter-tropical convergence zone rainband, enhances African easterly wave activity and low-level cyclonic vorticity across the deep tropical eastern North Atlantic. We show that such conditions increase the likelihood of powerful hurricanes developing in the deep tropics near the Cape Verde islands, elevating the risk of major hurricanes impacting the Caribbean islands and the U.S.


Subject(s)
Cyclonic Storms , Cabo Verde , Temperature , Seasons , El Nino-Southern Oscillation
2.
Mon Weather Rev ; 144(9): 3321-3331, 2016 Sep.
Article in English | MEDLINE | ID: mdl-29651170

ABSTRACT

A first observationally-based estimation of departures from gradient wind balance during secondary eyewall formation is presented. The study is based on the Atlantic Hurricane Edouard (2014). This storm was observed during the National Aeronautics and Space Administration's (NASA) Hurricane and Severe Storm Sentinel (HS3) experiment, a field campaign conducted in collaboration with the National Oceanic and Atmospheric Administration (NOAA). A total of 135 dropsondes are analyzed in two separate time periods: one named the secondary eyewall formation period and the other one referred to as the decaying-double eyewalled storm period. During the secondary eyewall formation period, a time when the storm was observed to have only one eyewall, the diagnosed agradient force has a secondary maxima that coincides with the radial location of the secondary eyewall observed in the second period of study. The maximum spin up tendency of the radial influx of absolute vertical vorticity is within the boundary layer in the region of the eyewall of the storm and the spin up tendency structure elongates radially outward into the secondary region of supergradient wind, where the secondary wind maxima is observed in the second period of study. An analysis of the boundary-layer averaged vertical structure of equivalent potential temperature reveals a conditionally unstable environment in the secondary eyewall formation region. These findings support the hypothesis that deep convective activity in this region contributed to spin up of the boundary layer tangential winds and the formation of a secondary eyewall that is observed during the decaying-double eyewalled storm period.

SELECTION OF CITATIONS
SEARCH DETAIL
...