Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Rev Immunol ; 24(3): 193-212, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37758850

ABSTRACT

Immune receptors are not randomly distributed at the plasma membrane of lymphocytes but are segregated into specialized domains that function as platforms to initiate signalling, as exemplified by the B cell or T cell receptor complex and the immunological synapse. 'Membrane-organizing proteins' and, in particular, tetraspanins and galectins, are crucial for controlling the spatiotemporal organization of immune receptors and other signalling proteins. Deficiencies in specific tetraspanins and galectins result in impaired immune synapse formation, lymphocyte proliferation, antibody production and migration, which can lead to impaired immunity, tumour development and autoimmunity. In contrast to conventional ligand-receptor interactions, membrane organizers interact in cis (on the same cell) and modulate receptor clustering, receptor dynamics and intracellular signalling. New findings have uncovered their complex and dynamic nature, revealing shared binding partners and collaborative activity in determining the composition of membrane domains. Therefore, immune receptors should not be envisaged as independent entities and instead should be studied in the context of their spatial organization in the lymphocyte membrane. We advocate for a novel approach to study lymphocyte function by globally analysing the role of membrane organizers in the assembly of different membrane complexes and discuss opportunities to develop therapeutic approaches that act via the modulation of membrane organization.


Subject(s)
Galectins , Tetraspanins , Humans , Galectins/analysis , Galectins/metabolism , Tetraspanins/analysis , Tetraspanins/chemistry , Tetraspanins/metabolism , Membrane Proteins/metabolism , Cell Membrane/metabolism , Signal Transduction
2.
Cell Rep ; 39(13): 111006, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35767951

ABSTRACT

T cells depend on the phosphatase CD45 to initiate T cell receptor signaling. Although the critical role of CD45 in T cells is established, the mechanisms controlling function and localization in the membrane are not well understood. Moreover, the regulation of specific CD45 isoforms in T cell signaling remains unresolved. By using unbiased mass spectrometry, we identify the tetraspanin CD53 as a partner of CD45 and show that CD53 controls CD45 function and T cell activation. CD53-negative T cells (Cd53-/-) exhibit substantial proliferation defects, and Cd53-/- mice show impaired tumor rejection and reduced IFNγ-producing T cells compared with wild-type mice. Investigation into the mechanism reveals that CD53 is required for CD45RO expression and mobility. In addition, CD53 is shown to stabilize CD45 on the membrane and is required for optimal phosphatase activity and subsequent Lck activation. Together, our findings reveal CD53 as a regulator of CD45 activity required for T cell immunity.


Subject(s)
T-Lymphocytes , Tetraspanin 25 , Animals , Cell Movement/immunology , Leukocyte Common Antigens/immunology , Lymphocyte Activation , Mice , Protein Isoforms , Receptors, Antigen, T-Cell/immunology , Signal Transduction , T-Lymphocytes/immunology , Tetraspanin 25/immunology
3.
Biochem Soc Trans ; 45(3): 741-750, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28620035

ABSTRACT

To facilitate the myriad of different (signaling) processes that take place at the plasma membrane, cells depend on a high degree of membrane protein organization. Important mediators of this organization are tetraspanin proteins. Tetraspanins interact laterally among themselves and with partner proteins to control the spatial organization of membrane proteins in large networks called the tetraspanin web. The molecular interactions underlying the formation of the tetraspanin web were hitherto mainly described based on their resistance to different detergents, a classification which does not necessarily correlate with functionality in the living cell. To look at these interactions from a more physiological point of view, this review discusses tetraspanin interactions based on their function in the tetraspanin web: (1) intramolecular interactions supporting tetraspanin structure, (2) tetraspanin-tetraspanin interactions supporting web formation, (3) tetraspanin-partner interactions adding functional partners to the web and (4) cytosolic tetraspanin interactions regulating intracellular signaling. The recent publication of the first full-length tetraspanin crystal structure sheds new light on both the intra- and intermolecular tetraspanin interactions that shape the tetraspanin web. Furthermore, recent molecular dynamic modeling studies indicate that the binding strength between tetraspanins and between tetraspanins and their partners is the complex sum of both promiscuous and specific interactions. A deeper insight into this complex mixture of interactions is essential to our fundamental understanding of the tetraspanin web and its dynamics which constitute a basic building block of the cell surface.


Subject(s)
Signal Transduction , Tetraspanins/metabolism , Humans , Molecular Dynamics Simulation , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Tertiary
4.
Sci Signal ; 10(478)2017 May 09.
Article in English | MEDLINE | ID: mdl-28487417

ABSTRACT

Activation of B cells by the binding of antigens to the B cell receptor (BCR) requires the protein kinase C (PKC) family member PKCß. Because PKCs must translocate to the plasma membrane to become activated, we investigated the mechanisms regulating their spatial distribution in mouse and human B cells. Through live-cell imaging, we showed that BCR-stimulated production of the second messenger diacylglycerol (DAG) resulted in the translocation of PKCß from the cytosol to plasma membrane regions containing the tetraspanin protein CD53. CD53 was specifically enriched at sites of BCR signaling, suggesting that BCR-dependent PKC signaling was initiated at these tetraspanin microdomains. Fluorescence lifetime imaging microscopy studies confirmed the molecular recruitment of PKC to CD53-containing microdomains, which required the amino terminus of CD53. Furthermore, we showed that Cd53-deficient B cells were defective in the phosphorylation of PKC substrates. Consistent with this finding, PKC recruitment to the plasma membrane was impaired in both mouse and human CD53-deficient B cells compared to that in their wild-type counterparts. These data suggest that CD53 promotes BCR-dependent PKC signaling by recruiting PKC to the plasma membrane so that it can phosphorylate its substrates and that tetraspanin-containing microdomains can act as signaling hotspots in the plasma membrane.


Subject(s)
B-Lymphocytes/metabolism , Cell Membrane/metabolism , Protein Kinase C/metabolism , Receptors, Antigen, B-Cell/metabolism , Tetraspanin 25/physiology , Animals , Cells, Cultured , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Protein Domains , Signal Transduction
5.
Sci Rep ; 5: 12201, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26183063

ABSTRACT

The spatial organization of membrane proteins in the plasma membrane is critical for signal transduction, cell communication and membrane trafficking. Tetraspanins organize functional higher-order protein complexes called 'tetraspanin-enriched microdomains (TEMs)' via interactions with partner molecules and other tetraspanins. Still, the nanoscale organization of TEMs in native plasma membranes has not been resolved. Here, we elucidated the size, density and distribution of TEMs in the plasma membrane of human B cells and dendritic cells using dual color stimulated emission depletion (STED) microscopy. We demonstrate that tetraspanins form individual nanoclusters smaller than 120 nm and quantified that a single tetraspanin CD53 cluster contains less than ten CD53 molecules. CD53 and CD37 domains were adjacent to and displayed only minor overlap with clusters containing tetraspanins CD81 or CD82. Moreover, CD53 and CD81 were found in closer proximity to their partners MHC class II and CD19 than to other tetraspanins. Although these results indicate that tetraspanin domains are adjacently positioned in the plasma membrane, they challenge the current view of the tetraspanin web of multiple tetraspanin species organized into a single domain. This study increases the molecular understanding of TEMs at the nanoscale level which is essential for comprehending tetraspanin function in cell biology.


Subject(s)
Membrane Microdomains/metabolism , Microscopy, Fluorescence , Tetraspanins/metabolism , Antigens, CD19/metabolism , B-Lymphocytes/metabolism , Cell Line , Cell Membrane/metabolism , Dendritic Cells/metabolism , Histocompatibility Antigens Class II/metabolism , Humans , Protein Binding , Tetraspanin 25/metabolism , Tetraspanin 28/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...