Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 5868, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33203830

ABSTRACT

Fatigue is a difficult multi-scale modelling problem nucleating from localised plasticity at the scale of dislocations and microstructure with significant engineering safety implications. Cold dwell fatigue is a phenomenon in titanium where stress holds at moderate temperatures lead to substantial reductions in cyclic life, and has been implicated in service failures. Using discrete dislocation plasticity modelling complemented by transmission electron microscopy, we successfully predict lifetimes for 'worst case' microstructures representative of jet engine spin tests. Fatigue loading above a threshold stress is found to produce slip in soft grains, leading to strong dislocation pile-ups at boundaries with hard grains. Pile-up stresses generated are high enough to nucleate hard grain basal dislocations, as observed experimentally. Reduction of applied cyclic load alongside a temperature excursion during the cycle lead to much lower densities of prism dislocations in soft grains and, sometimes, the elimination of basal dislocations in hard grains altogether.

2.
JOM (1989) ; 69(5): 863-871, 2017.
Article in English | MEDLINE | ID: mdl-32103878

ABSTRACT

Predicting when and where materials fail is a holy grail for structural materials engineering. Development of a predictive capability in this domain will optimize the employment of existing materials, as well as rapidly enhance the uptake of new materials, especially in high-risk, high-value applications, such as aeroengines. In this article, we review and outline recent efforts within our research groups that focus on utilizing full-field measurement and calculation of micromechanical deformation in Ni-based superalloys. In paticular, we employ high spatial resolution digital image correlation (HR-DIC) to measure surface strains and a high-angular resolution electron backscatter diffraction technique (HR-EBSD) to measure elastic distortion, and we combine these with crystal plasticity finite element (CPFE) modeling. We target our studies within a system of samples that includes single, oligo, and polycrystals where the boundary conditions, microstructure, and loading configuration are precisely controlled. Coupling of experiment and simulation in this manner enables enhanced understanding of crystal plasticity, as demonstrated with case studies in deformation compatibility; spatial distributions of slip evolution; deformation patterning around microstructural defects; and ultimately development of predictive capability that probes the location of microstructurally sensitive fatigue cracks. We believe that these studies present a careful calibration and validation of our experimental and simulation-based approaches and pave the way toward new understanding of crack formation in engineering alloys.

3.
Proc Math Phys Eng Sci ; 472(2185): 20150690, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26997901

ABSTRACT

Deformation in materials is often complex and requires rigorous understanding to predict engineering component lifetime. Experimental understanding of deformation requires utilization of advanced characterization techniques, such as high spatial resolution digital image correlation (HR-DIC) and high angular resolution electron backscatter diffraction (HR-EBSD), combined with clear interpretation of their results to understand how a material has deformed. In this study, we use HR-DIC and HR-EBSD to explore the mechanical behaviour of a single-crystal nickel alloy and to highlight opportunities to understand the complete deformations state in materials. Coupling of HR-DIC and HR-EBSD enables us to precisely focus on the extent which we can access the deformation gradient, F , in its entirety and uncouple contributions from elastic deformation gradients, slip and rigid body rotations. Our results show a clear demonstration of the capabilities of these techniques, found within our experimental toolbox, to underpin fundamental mechanistic studies of deformation in polycrystalline materials and the role of microstructure.

SELECTION OF CITATIONS
SEARCH DETAIL
...