Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35101973

ABSTRACT

Protected areas and renewable energy generation are critical tools to combat biodiversity loss and climate change, respectively. Over the coming decades, expansion of the protected area network to meet conservation objectives will be occurring alongside rapid deployment of renewable energy infrastructure to meet climate targets, driving potential conflict for a finite land resource. Renewable energy infrastructure can have negative effects on wildlife, and co-occurrence may mean emissions targets are met at the expense of conservation objectives. Here, we assess current and projected overlaps of wind and solar photovoltaic installations and important conservation areas across nine global regions using spatially explicit wind and solar data and methods for predicting future renewable expansion. We show similar levels of co-occurrence as previous studies but demonstrate that once area is accounted for, previous concerns about overlaps in the Northern Hemisphere may be largely unfounded, although they are high in some biodiverse countries (e.g., Brazil). Future projections of overlap between the two land uses presented here are generally dependent on priority threshold and region and suggest the risk of future conflict can be low. We use the best available data on protected area degradation to corroborate this level of risk. Together, our findings indicate that while conflicts between renewables and protected areas inevitably do occur, renewables represent an important option for decarbonization of the energy sector that would not significantly affect area-based conservation targets if deployed with appropriate policy and regulatory controls.


Subject(s)
Biodiversity , Climate Change , Conservation of Natural Resources , Solar Energy , Brazil
4.
One Earth ; 3(4): 504-514, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33163961

ABSTRACT

The increasing expansion of cropland is major driver of global carbon emissions and biodiversity loss. However, predicting plausible future global distributions of croplands remains challenging. Here, we show that, in general, existing global data aligned with classical economic theories of expansion explain the current (1992) global extent of cropland reasonably well, but not recent expansion (1992-2015). Deviations from models of cropland extent in 1992 ("frontierness") can be used to improve global models of recent expansion, most likely as these deviations are a proxy for cropland expansion under frontier conditions where classical economic theories of expansion are less applicable. Frontierness is insensitive to the land cover dataset used and is particularly effective in improving models that include mosaic land cover classes and the largely smallholder-driven frontier expansion occurring in such areas. Our findings have important implications as the frontierness approach offers a straightforward way to improve global land use change models.

5.
Sci Data ; 7(1): 130, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350265

ABSTRACT

Energy systems need decarbonisation in order to limit global warming to within safe limits. While global land planners are promising more of the planet's limited space to wind and solar photovoltaic, there is little information on where current infrastructure is located. The majority of recent studies use land suitability for wind and solar, coupled with technical and socioeconomic constraints, as a proxy for actual location data. Here, we address this shortcoming. Using readily accessible OpenStreetMap data we present, to our knowledge, the first global, open-access, harmonised spatial datasets of wind and solar installations. We also include user friendly code to enable users to easily create newer versions of the dataset. Finally, we include first order estimates of power capacities of installations. We anticipate these data will be of widespread interest within global studies of the future potential and trade-offs associated with the global decarbonisation of energy systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...