Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Bioconjug Chem ; 35(7): 934-943, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38935869

ABSTRACT

Membrane tension is an important physical parameter of describing cellular homeostasis, and it is widely used in the study of cellular processes involving membrane deformation and reorganization, such as cell migration, cell spreading, and cell division. Despite the importance of membrane tension, direct measurement remains difficult. In this work, we developed a ratiometric fluorescent probe sensitive to membrane tension by adjusting the carbon chain structure based on polarity-sensitive fluorophores. The probe is sensitive to changes in membrane tension after cells were subjected to physical or chemical stimuli, such as osmotic shock, lipid peroxidation, and mechanical stress. When the polarity of the plasma membrane increases (the green/red ratio decreases) and the membrane tension increases, the relative magnitude of the membrane tension can be quantitatively calculated by fluorescence ratio imaging. Thus, the probe proved to be an efficient and sensitive membrane tension probe.


Subject(s)
Cell Membrane , Fluorescent Dyes , Fluorescent Dyes/chemistry , Cell Membrane/metabolism , Humans , Optical Imaging/methods , Animals , Osmotic Pressure , Stress, Mechanical
2.
Adv Healthc Mater ; 13(20): e2304421, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38780250

ABSTRACT

Developing small-molecule photothermal agents (PTAs) with good near-infrared-II (NIR-II) response for deeper tissue penetration and minimizing damage to healthy tissues has attracted much attention in photothermal therapy (PTT). However, concentrating ultra-long excitation wavelengths and high photothermal conversion efficiencies (PCEs) into a single organic small molecule is still challenging due to the lack of suitable molecular structures. Here, six polymethine cyanine molecules based on the structure of indocyanine green are synthesized by increasing the conjugated structure of the two-terminal indole salts and the number of rigid methine units, and incorporating longer alkyl side chains into the indole salts. Ultimately, IC-1224 is obtained with an absorption wavelength of more than 1200 nm, which has a high PCE up to 83.2% in the NIR-II window and exhibits excellent PTT tumor ablation performance. This provides a high-performance NIR-II-responsive PTA, and offers further possibilities for the application of PTT in biomedical fields.


Subject(s)
Photothermal Therapy , Photothermal Therapy/methods , Animals , Mice , Humans , Carbocyanines/chemistry , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Cell Line, Tumor , Infrared Rays , Mice, Inbred BALB C , Phototherapy/methods , Female
3.
Adv Healthc Mater ; 12(29): e2301584, 2023 11.
Article in English | MEDLINE | ID: mdl-37660278

ABSTRACT

The serious threat that cancer poses to human health highlights the significance of early detection and effective treatment. The integration of fluorescence diagnosis and photothermal therapy in NIR-II has gained attention due to its high sensitivity, fast response, and noninvasiveness. Fluorescence, produced by the radiative relaxation process of electrons in a molecule, and photothermal, generated by the nonradiative relaxation process of electrons in a molecule, are competing photophysical processes. Hence, it is a challenge for the molecule to balance between the properties of fluorescence and photothermal. In this study, a NIR-II hemicyanine with TICT character is designed to obtain molecules with both better fluorescence and photothermal properties, utilizing positively charged pyridine salt and triphenylamine as electron acceptor and donor, respectively, and oxole as the conjugated π-bridge. HCY-995, one of the synthesized compounds, has a quantum yield of 0.09%, photothermal conversion efficiency of 54.90%, and a significant Stoke shift of 232 nm, which makes it appropriate for the integration of photothermal therapy and high-resolution imaging. This study provides new insights into the development of NIR-II molecules with fluorescent and photothermal integrated properties.


Subject(s)
Nanoparticles , Neoplasms , Humans , Photothermal Therapy , Carbocyanines , Neoplasms/diagnostic imaging , Neoplasms/therapy , Optical Imaging , Phototherapy
SELECTION OF CITATIONS
SEARCH DETAIL