Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(7): 6679-6688, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36844600

ABSTRACT

With the emergence of antibody-evasive omicron subvariants (BA.2.12.1, BA.4, and BA.5), which can compromise the efficacy of vaccination, it is of utmost importance to widen the finite therapeutic options for COVID-19. Although more than 600 co-crystal complexes of Mpro with inhibitors have been revealed, utilizing them to search for novel Mpro inhibitors remains limited. Although there were two major groups of Mpro inhibitors, covalent and noncovalent inhibitors, noncovalent inhibitors were our main focus due to the safety concerns with their covalent counterparts. Hence, this study aimed to explore Mpro noncovalent inhibition ability of phytochemicals extracted from Vietnamese herbals by combining multiple structure-based approaches. By closely inspecting 223 complexes of Mpro with noncovalent inhibitors, a 3D-pharmacophore model representing typical chemical features of Mpro noncovalent inhibitors was generated with good validation scores (sensitivity = 92.11%, specificity = 90.42%, accuracy = 90.65%, and goodness-of-hit score = 0.61). Afterward, the pharmacophore model was applied to explore the potential Mpro inhibitors from our in-house Vietnamese phytochemical database, revealing 18 substances, 5 of which were in vitro assayed. The remaining 13 substances were then examined by induced-fit molecular docking, revealing 12 suitable compounds. A machine-learning activity prediction model was developed to rank the hit, suggesting nigracin and calycosin-7-O-ß-glucopyranoside as promising Mpro natural noncovalent inhibitors.

2.
J Biomol Struct Dyn ; 41(22): 13154-13167, 2023.
Article in English | MEDLINE | ID: mdl-36709441

ABSTRACT

The role of interleukin-8 (IL-8) and its receptor CXCR2 in inflammatory responses and tumor development and progression has been well documented. Our study aims to discover novel compounds as CXCR2 antagonists to block the IL-8 signaling pathway using an in silico drug design. Herein, a structure-based pharmacophore model was developed based on the crystal structure of inactive CXCR2 in a complex with an allosteric inhibitor. This model was validated and refined, followed by virtual screening with the ZINC15 database. Subsequent molecular docking allows for predicting the best pose of a ligand inside a receptor binding site. We found that the 35 top-ranked hits exhibited docking scores from -30.81 to -25.28 kJ/mol and better interaction potential comparing the reference inhibitor. Analysis of ADME and toxicity properties revealed the efficacy and safety of the selected seven compounds. To validate the stability of the protein-ligand complex structure MD simulations approach has also been performed and confirmed via the critical parameters. The MD results explained that the CXCR2 receptor bound with two best-proposed molecules, including ZINC77105530 and ZINC93176465, was quite stable states as observed from low RMSD, RMSF, Rg, SASA values, and high occupancy of the interaction types. Finally, our data identified that these compounds play as potential inhibitors of IL-8 signaling pathways with the MM/GBSA binding free energies of -41.77 ± 6.45 kcal/mol and -38.84 ± 6.16 kcal/mol, respectively.Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Dynamics Simulation , Receptors, Interleukin-8B , Molecular Docking Simulation , Interleukin-8 , Ligands , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...