Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(2): e0281371, 2023.
Article in English | MEDLINE | ID: mdl-36787323

ABSTRACT

OBJECTIVE: There are currently no specific biomarkers to identify patients with abdominal aortic aneurysms (AAAs). Circulating exosomes contain microRNAs (miRNA) that are potential biomarkers for the presence of disease. This study aimed to characterize the exosomal miRNA expression profile of patients with AAAs in order to identify novel biomarkers of disease. METHODS: Patients undergoing duplex ultrasound (US) or computed tomography (CT) for screening or surveillance of an AAA were screened to participate in the study. Cases with AAA were defined as having a max aortic diameter >3 cm. Circulating plasma exosomes were isolated using Cushioned-Density Gradient Ultracentrifugation and total RNA was extracted. Next Generation Sequencing was performed on the Illumina HiSeq4000 SE50. Differential miRNA expression analysis was performed using DESeq2 software with a Benjamini-Hochberg correction. MicroRNA expression profiles were validated by Quantitative Real-Time PCR. RESULTS: A total of 109 patients were screened to participate in the study. Eleven patients with AAA and 15 non-aneurysmal controls met study criteria and were enrolled. Ultrasound measured aortic diameter was significantly larger in the AAA group (mean maximum diameter 4.3 vs 2.0 cm, P = 6.45x10-6). More AAA patients had coronary artery disease (5/11 vs 1/15, P = 0.05) as compared to controls, but the groups did not differ significantly in the rates of peripheral arterial disease and chronic obstructive pulmonary disease. A total of 40 miRNAs were differentially expressed (P<0.05). Of these, 18 miRNAs were downregulated and 22 were upregulated in the AAA group compared to controls. After false discovery rate (FDR) adjustment, only miR-122-5p was expressed at significantly different levels in the AAA group compared to controls (fold change = 5.03 controls vs AAA; raw P = 1.8x10-5; FDR P = 0.02). CONCLUSION: Plasma exosomes from AAA patients have significantly reduced levels of miRNA-122-5p compared to controls. This is a novel exosome-associated miRNA that warrants further investigation to determine its use as a diagnostic biomarker and potential implications in AAA pathogenesis.


Subject(s)
Aortic Aneurysm, Abdominal , Exosomes , MicroRNAs , Humans , Exosomes/metabolism , MicroRNAs/metabolism , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/metabolism , Biomarkers , Real-Time Polymerase Chain Reaction
2.
iScience ; 24(8): 102847, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34381972

ABSTRACT

We investigated whether extracellular vesicles (EVs) produced under hyperglycemic conditions could communicate signaling to drive atherosclerosis. We did so by treating Apoe-/- mice with exosomes produced by bone marrow-derived macrophages (BMDM) exposed to high glucose (BMDM-HG-exo) or control. Infusions of BMDM-HG-exo increased hematopoiesis, circulating myeloid cell numbers, and atherosclerotic lesions with an accumulation of macrophage foam and apoptotic cells. Transcriptome-wide analysis of cultured macrophages treated with BMDM-HG-exo or plasma EVs isolated from subjects with type II diabetes revealed a reduced inflammatory state and increased metabolic activity. Furthermore, BMDM-HG-exo induced cell proliferation and reprogrammed energy metabolism by increasing glycolytic activity. Lastly, profiling microRNA in BMDM-HG-exo and plasma EVs from diabetic subjects with advanced atherosclerosis converged on miR-486-5p as commonly enriched and recognized in dysregulated hematopoiesis and Abca1 control. Together, our findings show that EVs serve to communicate detrimental properties of hyperglycemia to accelerate atherosclerosis in diabetes.

3.
PLoS One ; 15(7): e0236914, 2020.
Article in English | MEDLINE | ID: mdl-32702013

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0215324.].

4.
Cell Rep ; 32(2): 107881, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32668250

ABSTRACT

Developing strategies that promote the resolution of vascular inflammation and atherosclerosis remains a major therapeutic challenge. Here, we show that exosomes produced by naive bone marrow-derived macrophages (BMDM-exo) contain anti-inflammatory microRNA-99a/146b/378a that are further increased in exosomes produced by BMDM polarized with IL-4 (BMDM-IL-4-exo). These exosomal microRNAs suppress inflammation by targeting NF-κB and TNF-α signaling and foster M2 polarization in recipient macrophages. Repeated infusions of BMDM-IL-4-exo into Apoe-/- mice fed a Western diet reduce excessive hematopoiesis in the bone marrow and thereby the number of myeloid cells in the circulation and macrophages in aortic root lesions. This also leads to a reduction in necrotic lesion areas that collectively stabilize atheroma. Thus, BMDM-IL-4-exo may represent a useful therapeutic approach for atherosclerosis and other inflammatory disorders by targeting NF-κB and TNF-α via microRNA cargo delivery.


Subject(s)
Atherosclerosis/genetics , Atherosclerosis/pathology , Exosomes/metabolism , Hematopoiesis/genetics , Inflammation/genetics , Inflammation/pathology , Macrophages/metabolism , MicroRNAs/metabolism , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/metabolism , Cell Polarity , Exosomes/ultrastructure , Gene Editing , Humans , Interleukin-4/metabolism , Macrophages/ultrastructure , Mice, Inbred C57BL , MicroRNAs/genetics , Myeloid Cells/metabolism , NF-kappa B/metabolism , Signal Transduction , Tissue Distribution , Tumor Necrosis Factor-alpha/metabolism
5.
JVS Vasc Sci ; 1: 28-41, 2020.
Article in English | MEDLINE | ID: mdl-32550603

ABSTRACT

OBJECTIVE: Peripheral artery disease (PAD) is a chronic condition characterized by inflammation. Emerging literature suggests that circulating exosomes and their microRNA (miRNA) contents may influence atherosclerosis and vascular remodeling. We hypothesize that circulating exosomes in patients with PAD directly modulate vascular cell phenotype and contain proinflammatory miRNAs. METHODS: Exosomes (particle size, 30-150 nm) were isolated from plasma of healthy individuals (n = 6), patients with mild PAD (mPAD; median Rutherford class, 2.5; n = 6), and patients with severe PAD (sPAD; median Rutherford class, 4; n = 5). Exosome identity, size, and concentration were determined by Western blot and nanoparticle tracking analysis. Human vascular smooth muscle cell (VSMC) and endothelial cell (EC) migration was assessed by a standard wound closure assay after exposure to exosome preparations. Monocyte-derived macrophages isolated from healthy volunteers were exposed to exosome preparations, and targeted gene expression was analyzed using quantitative polymerase chain reaction. Exosome miRNA cargos were isolated, and a panel of defined, vascular-active miRNAs was assessed by quantitative polymerase chain reaction. RESULTS: There was no difference in overall exosome particle concentration or size between the three groups (one-way analysis of variance [ANOVA], P > .05). Compared with exosomes from healthy individuals, exosomes from mPAD and sPAD patients increased VSMC migration (1.0 ± 0.09-fold vs 1.5 ± 0.09-fold vs 2.0 ± 0.12-fold wound closure; ANOVA, P < .0001) and inhibited EC migration (1.8 ± 0.07-fold vs 1.5 ± 0.04-fold vs 1.3 ± 0.02-fold wound closure; ANOVA, P < .01) in a stepwise fashion. Exosomes also induced changes in monocyte-derived macrophage gene expression that did not appear PAD specific. Hierarchical analysis of exosome miRNA revealed distinct clustering of vascular-active miRNAs between the three groups. Several miRNAs that promote inflammatory pathways in vascular cells were expressed at higher levels in exosomes from sPAD patients. CONCLUSIONS: Circulating exosomes from individuals with PAD exert in vitro functional effects on VSMCs and ECs that may promote adverse vessel remodeling. Exosomes from healthy individuals, mPAD patients, and sPAD patients contain distinct signatures of immune-regulatory miRNA. Together these data suggest that the proinflammatory cargo of circulating exosomes correlates with atherosclerosis severity in PAD patients and could influence vascular injury and repair. (JVS: Vascular Science 2020;1:28-41.). CLINICAL RELEVANCE: Exosomes and their cargo have been implicated in several vascular remodeling processes including atherosclerosis, angiogenesis, and neointimal hyperplasia. In this study, we demonstrate that circulating exosomes from individuals with peripheral artery disease exert in vitro effects on vascular cells that may adversely affect vessel remodeling. Moreover, these exosomes contain elevated levels of vascular-active microRNA. Our results suggest that exosomes may serve as both biomarkers and effectors of vascular disease in patients with peripheral artery disease and motivate further investigation into the role of exosomes and their contents in aberrant remodeling in vascular diseases.

6.
Nat Commun ; 11(1): 1178, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32132530

ABSTRACT

Targeted insertion of transgenes at pre-determined plant genomic safe harbors provides a desirable alternative to insertions at random sites achieved through conventional methods. Most existing cases of targeted gene insertion in plants have either relied on the presence of a selectable marker gene in the insertion cassette or occurred at low frequency with relatively small DNA fragments (<1.8 kb). Here, we report the use of an optimized CRISPR-Cas9-based method to achieve the targeted insertion of a 5.2 kb carotenoid biosynthesis cassette at two genomic safe harbors in rice. We obtain marker-free rice plants with high carotenoid content in the seeds and no detectable penalty in morphology or yield. Whole-genome sequencing reveals the absence of off-target mutations by Cas9 in the engineered plants. These results demonstrate targeted gene insertion of marker-free DNA in rice using CRISPR-Cas9 genome editing, and offer a promising strategy for genetic improvement of rice and other crops.


Subject(s)
Carotenoids/metabolism , Gene Editing/methods , Gene Knock-In Techniques/methods , Oryza/genetics , Plant Breeding/methods , Biosynthetic Pathways/genetics , CRISPR-Cas Systems/genetics , Carotenoids/analysis , DNA, Plant/genetics , Genome, Plant/genetics , Oryza/metabolism , Plants, Genetically Modified , Seeds/chemistry , Whole Genome Sequencing
7.
BMC Genomics ; 20(1): 905, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31775618

ABSTRACT

BACKGROUND: The availability of thousands of complete rice genome sequences from diverse varieties and accessions has laid the foundation for in-depth exploration of the rice genome. One drawback to these collections is that most of these rice varieties have long life cycles, and/or low transformation efficiencies, which limits their usefulness as model organisms for functional genomics studies. In contrast, the rice variety Kitaake has a rapid life cycle (9 weeks seed to seed) and is easy to transform and propagate. For these reasons, Kitaake has emerged as a model for studies of diverse monocotyledonous species. RESULTS: Here, we report the de novo genome sequencing and analysis of Oryza sativa ssp. japonica variety KitaakeX, a Kitaake plant carrying the rice XA21 immune receptor. Our KitaakeX sequence assembly contains 377.6 Mb, consisting of 33 scaffolds (476 contigs) with a contig N50 of 1.4 Mb. Complementing the assembly are detailed gene annotations of 35,594 protein coding genes. We identified 331,335 genomic variations between KitaakeX and Nipponbare (ssp. japonica), and 2,785,991 variations between KitaakeX and Zhenshan97 (ssp. indica). We also compared Kitaake resequencing reads to the KitaakeX assembly and identified 219 small variations. The high-quality genome of the model rice plant KitaakeX will accelerate rice functional genomics. CONCLUSIONS: The high quality, de novo assembly of the KitaakeX genome will serve as a useful reference genome for rice and will accelerate functional genomics studies of rice and other species.


Subject(s)
Genome, Plant , Genomics , Oryza/genetics , Whole Genome Sequencing , Computational Biology/methods , Genetic Variation , Genomics/methods , Molecular Sequence Annotation , Oryza/classification , Phenotype
8.
PLoS One ; 14(4): e0215324, 2019.
Article in English | MEDLINE | ID: mdl-30973950

ABSTRACT

Ultracentrifugation (UC) is recognized as a robust approach for the isolation of extracellular vesicles (EVs). However, recent studies have highlighted limitations of UC including low recovery efficiencies and aggregation of EVs that could impact downstream functional analyses. We tested the benefit of using a liquid cushion of iodixanol during UC to address such shortcomings. In this study, we compared the yield and purity of EVs isolated from J774A.1 macrophage conditioned media by conventional UC and cushioned-UC (C-UC). We extended our study to include two other common EV isolation approaches: ultrafiltration (UF) and polyethylene glycol (PEG) sedimentation. After concentrating EVs using these four methods, the concentrates underwent further purification by using OptiPrep density gradient ultracentrifugation (DGUC). Our data show that C-DGUC provides a two-fold improvement in EV recovery over conventional UC-DGUC. We also found that UF-DGUC retained ten-fold more protein while PEG-DGUC achieved similar performance in nanoparticle and protein recovery compared to C-DGUC. Regarding purity as assessed by nanoparticle to protein ratio, our data show that EVs isolated by UC-DGUC achieved the highest purity while C-DGUC and PEG-DGUC led to similarly pure preparations. Collectively, we demonstrate that the use of a high-density iodixanol cushion during the initial concentration step improves the yield of EVs derived from cell culture media compared to conventional UC. This enhanced yield without substantial retention of protein contaminants and without exposure to forces causing aggregation offers new opportunities for the isolation of EVs that can subsequently be used for functional studies.


Subject(s)
Cell Fractionation/methods , Centrifugation, Density Gradient/methods , Extracellular Vesicles/ultrastructure , Animals , Cell Line , Culture Media, Conditioned , Extracellular Vesicles/metabolism , Macrophages/metabolism , Macrophages/ultrastructure , Mice , Microscopy, Electron, Transmission , Nanoparticles/metabolism , Nanoparticles/ultrastructure , Polyethylene Glycols , Proteins/metabolism , RNA/metabolism , Triiodobenzoic Acids
9.
BMC Biotechnol ; 18(1): 54, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30180895

ABSTRACT

BACKGROUND: Switchgrass (Panicum virgatum L.) is a promising bioenergy feedstock because it can be grown on marginal land and produces abundant biomass. Recalcitrance of the lignocellulosic components of the switchgrass cell wall to enzymatic degradation into simple sugars impedes efficient biofuel production. We previously demonstrated that overexpression of OsAT10, a BAHD acyltransferase gene, enhances saccharification efficiency in rice. RESULTS: Here we show that overexpression of the rice OsAT10 gene in switchgrass decreased the levels of cell wall-bound ferulic acid (FA) in green leaf tissues and to a lesser extent in senesced tissues, and significantly increased levels of cell wall-bound p-coumaric acid (p-CA) in green leaves but decreased its level in senesced tissues of the T0 plants under greenhouse conditions. The engineered switchgrass lines exhibit an approximate 40% increase in saccharification efficiency in green tissues and a 30% increase in senesced tissues. CONCLUSION: Our study demonstrates that overexpression of OsAT10, a rice BAHD acyltransferase gene, enhances saccharification of lignocellulosic biomass in switchgrass.


Subject(s)
Acyltransferases/genetics , Lignin/metabolism , Oryza/enzymology , Panicum/genetics , Panicum/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/metabolism , Acyltransferases/metabolism , Biomass , Cell Wall/genetics , Cell Wall/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics
10.
Plant Cell ; 29(6): 1218-1231, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28576844

ABSTRACT

The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations.


Subject(s)
Genome, Plant/genetics , Genomics/methods , Oryza/genetics , DNA, Plant/genetics , Mutation/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...