Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Biomolecules ; 11(12)2021 11 30.
Article in English | MEDLINE | ID: mdl-34944432

ABSTRACT

Coarse-graining is a powerful tool for extending the reach of dynamic models of proteins and other biological macromolecules. Topological coarse-graining, in which biomolecules or sets thereof are represented via graph structures, is a particularly useful way of obtaining highly compressed representations of molecular structures, and simulations operating via such representations can achieve substantial computational savings. A drawback of coarse-graining, however, is the loss of atomistic detail-an effect that is especially acute for topological representations such as protein structure networks (PSNs). Here, we introduce an approach based on a combination of machine learning and physically-guided refinement for inferring atomic coordinates from PSNs. This "neural upscaling" procedure exploits the constraints implied by PSNs on possible configurations, as well as differences in the likelihood of observing different configurations with the same PSN. Using a 1 µs atomistic molecular dynamics trajectory of Aß1-40, we show that neural upscaling is able to effectively recapitulate detailed structural information for intrinsically disordered proteins, being particularly successful in recovering features such as transient secondary structure. These results suggest that scalable network-based models for protein structure and dynamics may be used in settings where atomistic detail is desired, with upscaling employed to impute atomic coordinates from PSNs.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Machine Learning , Models, Molecular , Molecular Dynamics Simulation , Neural Networks, Computer , Thermodynamics
2.
EMBO J ; 39(1): e102406, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31782549

ABSTRACT

The Hippo pathway, which plays a critical role in organ size control and cancer, features numerous WW domain-based protein-protein interactions. However, ~100 WW domains and 2,000 PY motif-containing peptide ligands are found in the human proteome, raising a "WW-PY" binding specificity issue in the Hippo pathway. In this study, we have established the WW domain binding specificity for Hippo pathway components and uncovered a unique amino acid sequence required for it. By using this criterion, we have identified a WW domain-containing protein, STXBP4, as a negative regulator of YAP. Mechanistically, STXBP4 assembles a protein complex comprising α-catenin and a group of Hippo PY motif-containing components/regulators to inhibit YAP, a process that is regulated by actin cytoskeleton tension. Interestingly, STXBP4 is a potential tumor suppressor for human kidney cancer, whose downregulation is correlated with YAP activation in clear cell renal cell carcinoma. Taken together, our study not only elucidates the WW domain binding specificity for the Hippo pathway, but also reveals STXBP4 as a player in actin cytoskeleton tension-mediated Hippo pathway regulation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/pathology , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Transcription Factors/metabolism , Vesicular Transport Proteins/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Cell Proliferation , Female , Hippo Signaling Pathway , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Prognosis , Protein Binding , Protein Serine-Threonine Kinases/genetics , Survival Rate , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription, Genetic , Tumor Cells, Cultured , Vesicular Transport Proteins/genetics , WW Domains , Xenograft Model Antitumor Assays , YAP-Signaling Proteins
3.
Integr Biol (Camb) ; 10(12): 768-779, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30516771

ABSTRACT

In plants, esterase/lipases perform transesterification reactions, playing an important role in the synthesis of useful molecules, such as those comprising the waxy coatings of leaf surfaces. Plant genomes and transcriptomes have provided a wealth of data about expression patterns and the circumstances under which these enzymes are upregulated, e.g. pathogen defense and response to drought; however, predicting their functional characteristics from genomic or transcriptome data is challenging due to weak sequence conservation among the diverse members of this group. Although functional sequence blocks mediating enzyme activity have been identified, progress to date has been hampered by the paucity of information on the structural relationships among these regions and how they affect substrate specificity. Here we present methodology for predicting overall protein flexibility and active site flexibility based on molecular modeling and analysis of protein structure networks (PSNs). We define two new types of specialized PSNs: sequence region networks (SRNs) and active site networks (ASNs), which provide parsimonious representations of molecular structure in reference to known features of interest. Our approach, intended as an aid to target selection for poorly characterized enzyme classes, is demonstrated for 26 previously uncharacterized esterase/lipases from the genome of the carnivorous plant Drosera capensis and validated using a case/control design. Analysis of the network relationships among functional blocks and among the chemical moieties making up the catalytic triad reveals potentially functionally significant differences that are not apparent from sequence analysis alone.


Subject(s)
Drosera/enzymology , Esterases/chemistry , Lipase/chemistry , Plant Proteins/chemistry , Algorithms , Catalysis , Catalytic Domain , Cluster Analysis , Computational Biology , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant , Models, Molecular , Plant Leaves/enzymology , Protein Conformation , Software , Substrate Specificity , Transcriptome
4.
J Phys Chem B ; 122(46): 10455-10469, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30372613

ABSTRACT

Frequently elusive to experimental characterizations, intrinsically disordered proteins (IDPs) can be probed using molecular dynamics to provide detailed insight into their complex structure, dynamics, and function. However, previous computational studies were often found to disagree with experiment due to either force field biases or insufficient sampling. In this study, nine unstructured short peptides and the HIV-1 Rev protein were simulated and extended to microseconds to assess these limitations in IDP simulations. In short peptide simulations, a tested IDP-specific force field ff14IDPSFF outperforms its generic counterpart ff14SB as agreement of simulated NMR observables with experiment improves, though its advantages are not clear-cut in apo Rev simulations. It is worth noting that sampling is probably still not sufficient in the ff14SB simulations of apo Rev even if 10 ms have been collected. This indicates that enhanced sampling techniques would greatly benefit IDP simulations. Finally, detailed structural analyses of apo Rev conformations demonstrate different secondary structural preferences between ff14SB (helical) and ff14IDPSFF (random coil). A natural next step is to ask a more quantitative question: whether ff14SB is too ordered or ff14IDPSFF is too disordered in simulations of more complex IDPs such as Rev. This requires further quantitative analyses both experimentally and computationally.


Subject(s)
Intrinsically Disordered Proteins/chemistry , HIV-1/chemistry , Molecular Dynamics Simulation , Peptides/chemistry , Protein Conformation , rev Gene Products, Human Immunodeficiency Virus/chemistry
5.
J Am Chem Soc ; 140(15): 4961-4964, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29620883

ABSTRACT

Polyketides are a large class of bioactive natural products with a wide range of structures and functions. Polyketides are biosynthesized by large, multidomain enzyme complexes termed polyketide synthases (PKSs). One of the primary challenges when studying PKSs is the high reactivity of their poly-ß-ketone substrates. This has hampered structural and mechanistic characterization of PKS-polyketide complexes, and, as a result, little is known about how PKSs position the unstable substrates for proper catalysis while displaying high levels of regio- and stereospecificity. As a first step toward a general plan to use oxetanes as carbonyl isosteres to broadly interrogate PKS chemistry, we describe the development and application of an oxetane-based PKS substrate mimic. This enabled the first structural determination of the acyl-enzyme intermediate of a ketosynthase (KS) in complex with an inert extender unit mimic. The crystal structure, in combination with molecular dynamics simulations, led to a proposed mechanism for the unique activity of DpsC, the priming ketosynthase for daunorubicin biosynthesis. The successful application of an oxetane-based polyketide mimic suggests that this novel class of probes could have wide-ranging applications to the greater biosynthetic community interested in the mechanistic enzymology of iterative PKSs.


Subject(s)
Ethers, Cyclic/chemistry , Molecular Probes/chemistry , Polyketide Synthases/chemistry , Polyketides/chemistry , Binding Sites , Ethers, Cyclic/metabolism , Molecular Probes/metabolism , Molecular Structure , Polyketide Synthases/metabolism , Polyketides/metabolism , Substrate Specificity
6.
Biochim Biophys Acta Gen Subj ; 1861(3): 636-643, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28040565

ABSTRACT

BACKGROUND: Carnivorous plants possess diverse sets of enzymes with novel functionalities applicable to biotechnology, proteomics, and bioanalytical research. Chitinases constitute an important class of such enzymes, with future applications including human-safe antifungal agents and pesticides. Here, we compare chitinases from the genome of the carnivorous plant Drosera capensis to those from related carnivorous plants and model organisms. METHODS: Using comparative modeling, in silico maturation, and molecular dynamics simulation, we produce models of the mature enzymes in aqueous solution. We utilize network analytic techniques to identify similarities and differences in chitinase topology. RESULTS: Here, we report molecular models and functional predictions from protein structure networks for eleven new chitinases from D. capensis, including a novel class IV chitinase with two active domains. This architecture has previously been observed in microorganisms but not in plants. We use a combination of comparative and de novo structure prediction followed by molecular dynamics simulation to produce models of the mature forms of these proteins in aqueous solution. Protein structure network analysis of these and other plant chitinases reveal characteristic features of the two major chitinase families. GENERAL SIGNIFICANCE: This work demonstrates how computational techniques can facilitate quickly moving from raw sequence data to refined structural models and comparative analysis, and to select promising candidates for subsequent biochemical characterization. This capability is increasingly important given the large and growing body of data from high-throughput genome sequencing, which makes experimental characterization of every target impractical.


Subject(s)
Chitinases/genetics , Chitinases/metabolism , Drosera/genetics , Drosera/metabolism , Genome, Plant/genetics , Models, Molecular , Molecular Dynamics Simulation , Phylogeny , Protein Domains/genetics
7.
Sci Rep ; 6: 37797, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27898102

ABSTRACT

Programmed cell death (PCD) is critical for development and responses to environmental stimuli in many organisms. FUZZY ONIONS (FZO) proteins in yeast, flies, and mammals are known to affect mitochondrial fusion and function. Arabidopsis FZO-LIKE (FZL) was shown as a chloroplast protein that regulates chloroplast morphology and cell death. We cloned the FZL gene based on the lesion mimic phenotype conferred by an fzl mutation. Here we provide evidence to support that FZL has evolved new function different from its homologs from other organisms. We found that fzl mutants showed enhanced disease resistance to the bacterial pathogen Pseudomonas syringae and the oomycete pathogen Hyaloperonospora arabidopsidis. Besides altered chloroplast morphology and cell death, fzl showed the activation of reactive oxygen species (ROS) and autophagy pathways. FZL and the defense signaling molecule salicylic acid form a negative feedback loop in defense and cell death control. FZL did not complement the yeast strain lacking the FZO1 gene. Together these data suggest that the Arabidopsis FZL gene is a negative regulator of cell death and disease resistance, possibly through regulating ROS and autophagy pathways in the chloroplast.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Chloroplasts/physiology , GTP Phosphohydrolases/genetics , Peronospora/immunology , Plant Diseases/immunology , Pseudomonas syringae/immunology , Autophagy , Cell Death , Gene Expression Regulation, Plant , Mutation/genetics , Phenotype , Plant Immunity , Plant Leaves/metabolism , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism
8.
European J Org Chem ; 2014(34): 7651-7657, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26257574

ABSTRACT

A variety of quinoline-4-amines were synthesized from substituted 3-(2-nitrophenyl)isoxazoles utilizing Zn0 or Fe0 dust and HOAc via a reductive heterocyclization process. The starting isoxazoles were synthesized from readily available starting materials. A brief survey of functional groups tolerated in this reductive heterocyclization was performed and several 10-amino-3,4-dihydrobenzo[b][1,6]naphthyridin-1(2H)-one and 9-amino-3,4-dihydroacridin-1(2H)-one examples were synthesized.

SELECTION OF CITATIONS
SEARCH DETAIL